Russian Federation

Total Page:16

File Type:pdf, Size:1020Kb

Russian Federation THE RUSSIAN FEDERATION This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. Section I. EXECUTIVE SUMMARY Section I. EXECUTIVE SUMMARY The forest area of the Russian Federation is 809,090 ha or 20.1% of the total forest area of the world (Global Forest Resources Assessment 2010). The country's forests are mostly natural. Annually artificial reforestation (planting or seeding of native species) is carried out on an area of about 200 hectares, and reforestation by means of promoting natural regeneration (creating condi- tions for rapid stocking of valuable native tree species) is carried out on an area of over 600 hectares, which is very important to preserving/maintaining the genetic structure of natural forests. Forest ecosystems of the Russian Federation, spread over a huge territory, make a significant contribution to the regional and global stability of the biosphere, conservation of forest genetic di- versity, maintenance of global carbon balance, and perform global ecosystem functions such as cli- mate- and water-regulating, soil conservation, etc. Russia's forests play a vital role in conserving the biodiversity of the temperate and boreal regions of Eurasia. The general state of the species diversity in Russia is quite good. In general, it corresponds to the level of biodiversity typical for the 8 natural areas of the country, as all of them have preserved the major floristic complexes. The main tree species of Russia are larch, pine, spruce, cedar, fir, oak, birch. Particularly high level of species diversity and dendroflora endemism are characteristic for Caucasus, Southern Siberia and the Far East. Being relatively few in number the main forest forming species in Russia have extensive and varied growing sites. In the vast areas of woody plants of the Russian Federation a special role in the biology of species belongs to genetic diversity within species, which provides populations of woody plants to adapt to specific habitats by natural selection. 9 Section I. EXECUTIVE SUMMARY Russia holds about 25% of old-growth forests in the world. These vast arrays characterized by the natural composition, structure and dynamics of population and coenotical mosaics, ensure the spontaneous development of tree populations. Old-growth forests have a natural (background) level of biodiversity and are a kind of sample area for the genetic, species and ecosystem diversity. These forests are important for the knowledge about the natural genetic structure of populations and the dynamics of population genetic processes. Despite the good integrity of natural ecosystems in Russia and the prevalence of the land- scapes undisturbed and low-disturbed by economic activity in general, over the recent centuries the gene pool of individual edificatory tree species in the European part of the country has undergone transformation and erosion as a result of continuous selective and mining logging and periodic cata- strophic fires. Since the 1950s, a series of forest regions of Russia is experiencing the impact of tox- ic industrial waste and contamination. The study of the flora of the country that started in XVIII century continues at the present time and involves the stuff of industry and academic research institutions, universities and botanical gardens. Detailed information about the vascular plants of Russia is presented by S.K.Cherepanov in the Summary Report “Vascular Plants of Russia and the Neighboring Countries” (1995) as well as in the 30-volume (with additions) publication “Flora of the USSR”(1934-1964). Despite the fact that in the country there are teams of qualified professionals the inventory of the plant species di- versity of forest ecosystems has not been completed yet and there is no uniform list of species for the country. The study of the ecosystem, species and genetic diversity in the country has been une- ven. Russian scientists have analyzed (using morphological, karyological and molecular meth- ods) the phylogenetic relationships of species and supraspecific taxa of trees, and have received the quantitative assessment of the genetic structure of populations of some certain species and species complexes. It has been found that the main forest forming species of Russia are characterized by high levels of genetic diversity within the populations, especially in the central part of their areas, local areas close to the ancient refugia and the areas of introgressive hybridization. Most species have a relatively poor spatial intraspecific genetic differentiation in the central part of their areas: 2- 6% of the total variability accounted for the interpopulation component. In the outskirts of the areas the degree of differentiation increases. It has been found that, as a rule, sympatrical pairs of the same species are characterized by the interspecific introgression of genes. Genetic differences in the majority of the studied species are correlated with the geographic distances between populations. The results of the study of the genetic diversity between and within tree populations in Rus- sia are published mostly in the Russian language and are often presented in the publications which are difficult to reach by international scientific readership. In this regard, a special desk review of the data on the genetic diversity between and within species of woody plants in Russia presented in hundreds of Russian scientific sources was conducted especially for this Report. In cases when the genetic diversity values of the selected indicators were absent, they were calculated based on the available descriptions of allelic variation. The results of this large analysis are summarized in Ta- bles IV.3d and IV.3e of this Report, which for the first time summarizes the main parameters of the genetic diversity between and within the populations of woody plants in Russia. Studies have found that conifer plantations represent a hierarchical structure of interconnected subdivided populations, and are not, as is so often appear, panmictic community where all differences are leveled by an un- restricted gene flow. Such hierarchical subdivided structures differ in sizes of the occupied territo- ries and the number of individuals, the types of growing conditions and their proximity to the spe- cies optimum, degree of spatial subdivision, levels of intra-population diversity and inbreeding. Pa- rameters and modes of the functioning of these population systems are determined by the following: the total effective size and the number of individual subpopulations, migration (through open polli- nation with different ways of pollen, seeds and fruit dispersal) and its limitations (different forms of insulation), crossing system (frequency of outcrossing, inbreeding and close crossing, and assorta- 10 Section I. EXECUTIVE SUMMARY tive crossing), Pleistocene and Holocene history, and introgressive hybridization with closely relat- ed species. Knowledge received by the Russian science is unique and extremely important for strength- ening the understanding and expanding the knowledge about the forest genetic resources of the world, they will contribute to the development of the international standards and protocols of inven- tory and monitoring of forest genetic resources. The priority areas in the field of forest genetic resources in Russia should be: a large-scale inventory of forest genetic resources with the use of traditional and modern molecular methods, the integration of the genetic diversity assessment ele- ments in the state forest inventory; study of the native genetic structure of tree species in old-growth forests and its re- sponse to climate change; study of the transformed genetic structure of species and its adaptation mechanisms in forests suffered from anthropogenic/radiation damage; study of the genetic structure of the populations of endemic, rare and endangered species, the marginal and small local mountain populations, "ancestral" populations in refugia, and the genome of hybrids with a significant heterosis effect; development of theoretical frameworks, methodologies and practical activity plans of the conservation and management of forest genetic resources at the federal level and the level of the federal subjects of the Russian Federation. Russia has paid great attention to the system of specially protected
Recommended publications
  • Toponimys with Ancient Turk Origins in the Balkans
    IBAC 2012 vol.2 TOPONIMYS WITH ANCIENT TURK ORIGINS IN THE BALKANS Prof .Ass. Hajiyeva GALIBA Nakhchivan State Univresity, e-mail: [email protected] Abstract One of the sources dealing with the ancient Turkic history are toponyms. Toponymic investigations show that most of the ancient geographical names which have spread in Eurosia, in Central Asia, from North Africa, to Eastern Turkistan even in Siberia and these names were formed before Roman and Byzantine periods. So development of toponymic investigations, study of the history of Turkic peoples and scientific investigation of existing geographical names which keep the history of Turkic peoples have great significance. One of the uninvestigated fields of the Turkic history are geographical names keeping historical facts within are the holy Balkan areas. The toponymic investigations carried on the Balkans show that these territories are the places were the ancient Turkic tribes were firstly settled and possessed. This fact is proved by the Turkic tribe names and by the words of different semantic meaning of the languages of Turkic tribes. The great deal of Balkan geographical names are the names derived out of ethnoniyms thus the names reflecting ancient Turkic tribe names (Astipos//Astepe//Ishtip, Izletdere, Vardar, Sofular, Gilan, Sahsuvar kariyesi, Kosalar village, Tatarli kariyesi, in the Kosova, Uskup, Usturumca, Kumanova, Propishtip, Kochana, Makedonska Kamenika in Makedony, Araz district, Arazli, Azman, Cepine, Coban, Chorlu, Culfalar, Horozlar, Kangirlar, Sakarli, Sungurlar, Karuk, Kaspi, Kaz//Kas, Kazancilar, Kecililer, Kuman, Padarlar, Sofular, Tatar, Uzlar in Bulgaria) show that Balkans historically were Turkic areas. Geographical names are the real witnesses of history. We must pay great attention to the scientific investigations of the geographical names in Balkan states.
    [Show full text]
  • Buryat Cumhuriyeti'nin Turizm Potansiyeli Ve Başlıca
    SDÜ FEN-EDEBİYAT FAKÜLTESİ SOSYAL BİLİMLER DERGİSİ, AĞUSTOS 2021, SAYI: 53, SS. 136-179 SDU FACULTY OF ARTS AND SCIENCES JOURNAL OF SOCIAL SCIENCES, AUGUST 2021, No: 53, PP. 136-179 Makale Geliş | Received : 07.06.2021 Makale Kabul | Accepted : 31.08.2021 Emin ATASOY Bursa Uludağ Üniversitesi, Türkçe ve Sosyal Bilimler Eğitimi Bölümü [email protected] ORCID Numarası|ORCID Numbers: 0000-0002-6073-6461 Erol KAPLUHAN Burdur Mehmet Akif Ersoy Üniversitesi, Coğrafya Bölümü [email protected] ORCID Numarası|ORCID Numbers: 0000-0002-2500-1259 Yerbol PANGALİYEV [email protected] ORCID Numarası|ORCID Numbers: 0000-0002-2392-4180 Buryat Cumhuriyeti’nin Turizm Potansiyeli ve Başlıca Turizm Kaynakları Touristic Potential And Major Touristic Attractions Of Buryatia Republic Öz Rusya Federasyonu’nun Güney Sibirya Bölgesi’nde yer alan Buryat Cumhuriyeti, Saha Cumhuriyeti ve Komi Cumhuriyeti’nden sonra Rusya’nın en büyük yüzölçümüne sahip üçüncü özerk cumhuriyetidir. Siyasi yapılanma olarak Uzakdoğu Federal İdari Bölgesi, ekonomik yapılanma olarak ise Uzakdoğu İktisadi Bölge sınırları içinde yer alan Buryatya, Doğu Sibirya’nın güney kesimlerinde ve Moğolistan’ın kuzeyinde yer almaktadır. Araştırmada coğrafyanın temel araştırma metotları gözetilmiş, kaynak tarama yöntemi aracılığıyla ilgili kaynaklar ve yayınlar temin edilerek veri tabanı oluşturulmuştur. Elde edilen verilerin değerlendirilmesi için haritalar, şekiller ve tablolar oluşturulmuştur. Konunun net anlaşılması amacıyla Buryat Cumhuriyeti’nin lokasyon, Buryat Cumhuriyeti Kültürel Turizm Merkezleri, Buryat Cumhuriyeti’nin Doğal turizm alanları, Buryat Cumhuriyeti milli parkları ve doğa koruma alanları haritalarının yanı sıra ifadeleri güçlendirmek için konular arasındaki bağlantılar tablo ile vurgulanmıştır. Tüm bu coğrafi olumsuzluklara rağmen, Buryatya zengin doğal kaynaklarıyla, geniş Tayga ormanlarıyla, yüzlerce göl ve akarsu havzasıyla, yüzlerce sağlık, kültür ve inanç merkeziyle, çok sayıda kaplıca, müze ve doğa koruma alanıyla, Rusya’nın en zengin turizm kaynaklarına sahip cumhuriyetlerinden biridir.
    [Show full text]
  • Place Names: an Analysis of Published Materials
    DOCUMENT RESUME ED 319 675 SO 020 925 AUTHOR Anderson, Paul S. TITLE Seeking a Core of Wo' -'d Regional Geography Place Names: An Analysis of Published Materials. PUB DATE 14 Oct 89 NOTE 18p.; Paper presentel at the Annual Meeting of the National Council for Geographic Education (Hershey, PA, October 11-14, 1989). Updated April 1990. PUB TYPE Speeches/Conference Papers (150) -- Reference Materials - Geographic Materials (133) -- Information Analyses (070) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Elementary Secondary Education; *Geographic Location; *Geography Instruction; *Minimum Competencies; *Physical Geography IDENTIFIERS Place Names ABSTRACT Knowing place names is not the essence of geography, but some knowledge of names of geographical locations is widely considered to be basic information. Whether used in general cultural literacy, lighthearted Trivial Pursuit, educational sixth grade social studies, or serious debates on world events, place names and their locations are assumed to be known. At the college level of world regional geography courses, five books with lists of place names are in print by geographers: Fuson; MacKinnon; Pontius and Woodward; DiLisio; and Stoltman. Those five sources plus place name lists by P.S. Anderson and from Hirsch reveal similarities and diversities in their content. A core list of place names is presented with several cross-classifications by region, type of geographic feature, and grade level of students. The results reveal a logical progression of complexity that could assist geography educators to increase student learning and avoid duplication of efforts. There will never be complete agreement about any listing of the core geographical place names, but the presented lists are intended to stimulate discussion along constructive avenues.
    [Show full text]
  • Formation of Spatial Mosaic of Abies Nephrolepis (Pinaceae) Populations in Korean Pine- Broadleaved Forests in the South of Russian Far East
    Rastitelnye Resursy. 53(4): 480—495, 2017 FORMATION OF SPATIAL MOSAIC OF ABIES NEPHROLEPIS (PINACEAE) POPULATIONS IN KOREAN PINE- BROADLEAVED FORESTS IN THE SOUTH OF RUSSIAN FAR EAST © T. Ya. Petrenko, *, 1, 2 A. M. Omelko, 1A. A. Zhmerenetsky, 1 O. N. Ukhvatkina,1 L. A. Sibirina1 1 Federal Scientific center of the East Asia terrestrial biodiversity FEB RAS, Vladivostok, Russia 2Far Eastern Federal University, Vladivostok, Russia *E-mail: [email protected] SUMMARY We studied structure and described formation of Abies nephrolepis (Trautv.) Maxim. population mosaic in Korean pine-broadleaved forest of the Sikhote-Alin mountain range in the south of Russian Far East. The study was performed on two permanent sample plots (1.5 ha and 10.5 ha) established in primary forest of Verhneussuriysky Research Station of the Federal Scientific center of the East Asia terrestrial biodiversity, FEB RAS. One of the permanent sample plots (10.5 ha) was specifically designed for studying tree population mosaic. It covers an area necessary for the analysis of population structure of the dominant tree species. To describe the population mosaics we use demographic approach that allows to consider specific features of plant ontogeny. It is established, that mosaic structure transforms from contagious (immature plants) to normal (generative plants) distribution. Mosaic of generative plants is formed at the time of transition from immature to virginal ontogenetic stage. Unlike mosaic of Picea ajanensis (Siebold et Zucc.) Carr., where plants continuously accumulated starting from virginal stage, mosaic of A. nephrolepis continues to thin out starting from immature stage. Thus, this species is characterized by R-strategy.
    [Show full text]
  • EVERGREEN TREES for NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS EVERGREEN TREES FOR NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu Throughout much of the Great Plains, just a handful of species make up the majority of evergreens being planted. This makes them extremely vulnerable to challenges brought on by insects, extremes of weather, and diseases. Utilizing a variety of evergreen species results in a more diverse and resilient landscape that is more likely to survive whatever challenges come along. Geographic Adaptability: An E indicates plants suitable primarily to the Eastern half of the state while a W indicates plants that prefer the more arid environment of western Nebraska. All others are considered to be adaptable to most of Nebraska. Size Range: Expected average mature height x spread for Nebraska. Common & Proven Evergreen Trees 1. Arborvitae, Eastern ‐ Thuja occidentalis (E; narrow habit; vertically layered foliage; can be prone to ice storm damage; 20‐25’x 5‐15’; cultivars include ‘Techny’ and ‘Hetz Wintergreen’) 2. Arborvitae, Western ‐ Thuja plicata (E; similar to eastern Arborvitae but not as hardy; 25‐40’x 10‐20; ‘Green Giant’ is a common, fast growing hybrid growing to 60’ tall) 3. Douglasfir (Rocky Mountain) ‐ Pseudotsuga menziesii var. glauca (soft blue‐green needles; cones have distinctive turkey‐foot bract; graceful habit; avoid open sites; 50’x 30’) 4. Fir, Balsam ‐ Abies balsamea (E; narrow habit; balsam fragrance; avoid open, windswept sites; 45’x 20’) 5. Fir, Canaan ‐ Abies balsamea var. phanerolepis (E; similar to balsam fir; common Christmas tree; becoming popular as a landscape tree; very graceful; 45’x 20’) 6.
    [Show full text]
  • Black Sea-Caspian Steppe: Natural Conditions 20 1.1 the Great Steppe
    The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe East Central and Eastern Europe in the Middle Ages, 450–1450 General Editors Florin Curta and Dušan Zupka volume 74 The titles published in this series are listed at brill.com/ecee The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe By Aleksander Paroń Translated by Thomas Anessi LEIDEN | BOSTON This is an open access title distributed under the terms of the CC BY-NC-ND 4.0 license, which permits any non-commercial use, distribution, and reproduction in any medium, provided no alterations are made and the original author(s) and source are credited. Further information and the complete license text can be found at https://creativecommons.org/licenses/by-nc-nd/4.0/ The terms of the CC license apply only to the original material. The use of material from other sources (indicated by a reference) such as diagrams, illustrations, photos and text samples may require further permission from the respective copyright holder. Publication of the presented monograph has been subsidized by the Polish Ministry of Science and Higher Education within the National Programme for the Development of Humanities, Modul Universalia 2.1. Research grant no. 0046/NPRH/H21/84/2017. National Programme for the Development of Humanities Cover illustration: Pechenegs slaughter prince Sviatoslav Igorevich and his “Scythians”. The Madrid manuscript of the Synopsis of Histories by John Skylitzes. Miniature 445, 175r, top. From Wikimedia Commons, the free media repository. Proofreading by Philip E. Steele The Library of Congress Cataloging-in-Publication Data is available online at http://catalog.loc.gov LC record available at http://catalog.loc.gov/2021015848 Typeface for the Latin, Greek, and Cyrillic scripts: “Brill”.
    [Show full text]
  • Programa Nacional Para La Aplicación De La Normativa Fitosanitaria
    PROGRAMA NACIONAL PARA LA APLICACIÓN DE LA NORMATIVA FITOSANITARIA PLAN NACIONAL DE CONTINGENCIA DE Dendrolimus sibiricus Tschetverikov SEPTIEMBRE 2020 SUMARIO DE MODIFICACIONES REVISIÓN FECHA DESCRIPCIÓN OBJETO DE LA REVISIÓN 30/09/2020 Documento base Plan Contingencia Dendrolimus sibiricus 2020 INDICE 1. Introducción y Objetivos 2. Definiciones 3. Marco legislativo, Organización y Estructura de mando 3.1 Marco legislativo 3.2 Marco legislativo, Organización y Estructura 4. Información sobre la enfermedad 4.1 Distribución de la plaga 4.2 Taxonomía 4.3 Daño 4.4 Plantas hospedantes 5. Métodos de identificación y diagnóstico 5.1 Detección de la plaga 5.2 Identificación y diagnóstico 6. Ejecución del Plan Nacional de Contingencia 6.1 Plan de Nacional Contingencia y los planes específicos de acción 6.2 Medidas cautelares a adoptar en caso de sospecha de la presencia de Dendrolimus sibiricus. 6.3 Medidas a adoptar en caso de confirmación de la presencia de Dendrolimus sibiricus. 6.4 Medidas de erradicación. 6.5 Medidas en caso de incumplimiento. 7. Comunicación, Documentación y Formación 7.1. Comunicación externa y campañas de divulgación/sensibilización. 7.2 Consulta a los grupos de interés 7.3. Comunicación interna y documentación 7.4. Pruebas y formación del personal 8. Evaluación y revisión 9. Referencias Anexo 1: PROTOCOLO DE PROSPECCIONES DE Dendrolimus sibiricus Anexo 2: PROGRAMA DE ERRADICACIÓN DE Dendrolimus sibiricus Página 1 de 27 Plan Contingencia Dendrolimus sibiricus 2020 1. Introducción y Objetivos En el presente documento se recogen las medidas que deben adoptarse contra Dendrolimus sibiricus, organismo nocivo regulado, con el objetivo de impedir su aparición, y en caso de que aparezca, actuar con rapidez y eficacia, determinar su distribución y aplicar medidas de erradicación.
    [Show full text]
  • Stand Structure and Dynamics During a 16-Year Period in a Conifer-Hardwood Mixed Forest, Northern Japan
    Takahashi et al. 1 Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan Koichi Takahashia,1,*, Daisuke Mitsuishia, Shigeru Uemurab, Jun-Ichirou Suzukia,2, Toshihiko Haraa a: The Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan b: Forest Research Station, Field Science Center for Northern Biosphere, Hokkaido University, Nayoro 096-0071, Japan Present address 1: Department of Biology, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan 2: Department of Biology, Faculty of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan *: All correspondence to K. Takahashi at the above present address#1. Fax: +81.263.37.2560 E-mail: [email protected] This manuscript consists of 23-typed pages including figure legends, 3 tables and 6 figures. Takahashi et al. 2 Abstract The stand structure and regeneration dynamics of trees > 2.0 m in trunk height were studied during 1982–1998 in a 1-ha plot in a sub-boreal conifer-hardwood mixed forest, northern Japan, with a dense dwarf bamboo in the understory. Total density was low in 1982 (651 trees/ha), as compared with other forests in Japan. Quercus crispula was dominant in the upper canopy layer but their saplings were rare, while Acer mono, Acer japonicum and Abies sachalinensis were dominant in the sub-canopy and understory layers with many saplings. Mortality of each species was quite low during the census period (average 0.57%/yr), and there was no clear difference among the four species. The age structure of Quercus crispula was bell-shaped with a peak at ca.
    [Show full text]
  • A Documentation of the Jewish Heritage in Siberia
    Informationen der Bet Tfila – Forschungsstelle für jüdische Architektur in Europa bet-tfila.org/info Nr. 18 1+2/15 Fakultät 3, Technische Universität Braunschweig / Center for Jewish Art, Hebrew University of Jerusalem SPECIAL EDITION “Siberia” – SONDERAUSGABE „Sibirien“ “From Jerusalem to Birobidzhan” – A Documentation of the Jewish Heritage in Siberia In August 2015, the team of the Center for Jewish Art at the Hebrew University Erstmalig erscheint aus aktuellem Anlass of Jerusalem undertook a research expedition to Siberia. Over the course of 21 eine Sonderausgabe von bet tfila.org/info: Im days, the expedition spanned 6,000 km. Overall, the CJA team visited 16 sites August 2015 konnte sich das deutsch-israe- in Siberia and the Russian Far East: Tomsk, Mariinsk, Achinsk, Krasnoyarsk, lische Team des Center for Jewish Art und Kansk, Nizhneudinsk, Irkutsk, Babushkin (former Mysovsk), Kabansk, Ulan- der Bet Tfila – Forschungsstelle einen lange Ude (former Verkhneudinsk), Barguzin, Petrovsk Zabaikalskii (former Petrovskii gehegten Wunsch erfüllen und das jüdische Zavod), Chita, Khabarovsk, Birobidzhan, and Vladivostok. Erbe in Sibirien und im „Fernen Osten“ Russlands dokumentieren. In drei Wochen 16 synagogues and 4 collections of ritual objects were documented alongside a legten die fünf Wissenschaftler (Prof. Aliza survey of 11 Jewish cemeteries and numerous Jewish houses. The team consisted Cohen-Mushlin, Dr. Vladimir Levin, Dr. of Prof. Aliza Cohen-Mushlin, Dr. Vladimir Levin, Dr. Katrin Kessler (Bet Tfila, Katrin Keßler, Dr. Anna Berezin und Archi- Braunschweig), Dr. Anna Berezin, and architect Zoya Arshavsky. The expedi- tektin Zoya Arshavsky) auf ihrer Reise von tion was made possible with the generous donations of Mrs. Josephine Urban, Tomsk nach Vladivostok über 6.000 km zu- London, and an anonymous donor.
    [Show full text]
  • A Region with Special Needs the Russian Far East in Moscow’S Policy
    65 A REGION WITH SPECIAL NEEDS THE RUSSIAN FAR EAST IN MOSCOW’s pOLICY Szymon Kardaś, additional research by: Ewa Fischer NUMBER 65 WARSAW JUNE 2017 A REGION WITH SPECIAL NEEDS THE RUSSIAN FAR EAST IN MOSCOW’S POLICY Szymon Kardaś, additional research by: Ewa Fischer © Copyright by Ośrodek Studiów Wschodnich im. Marka Karpia / Centre for Eastern Studies CONTENT EDITOR Adam Eberhardt, Marek Menkiszak EDITOR Katarzyna Kazimierska CO-OPERATION Halina Kowalczyk, Anna Łabuszewska TRANSLATION Ilona Duchnowicz CO-OPERATION Timothy Harrell GRAPHIC DESIGN PARA-BUCH PHOTOgrAPH ON COVER Mikhail Varentsov, Shutterstock.com DTP GroupMedia MAPS Wojciech Mańkowski PUBLISHER Ośrodek Studiów Wschodnich im. Marka Karpia Centre for Eastern Studies ul. Koszykowa 6a, Warsaw, Poland Phone + 48 /22/ 525 80 00 Fax: + 48 /22/ 525 80 40 osw.waw.pl ISBN 978-83-65827-06-7 Contents THESES /5 INTRODUctiON /7 I. THE SPEciAL CHARActERISticS OF THE RUSSIAN FAR EAST AND THE EVOLUtiON OF THE CONCEPT FOR itS DEVELOPMENT /8 1. General characteristics of the Russian Far East /8 2. The Russian Far East: foreign trade /12 3. The evolution of the Russian Far East development concept /15 3.1. The Soviet period /15 3.2. The 1990s /16 3.3. The rule of Vladimir Putin /16 3.4. The Territories of Advanced Development /20 II. ENERGY AND TRANSPORT: ‘THE FLYWHEELS’ OF THE FAR EAST’S DEVELOPMENT /26 1. The energy sector /26 1.1. The resource potential /26 1.2. The infrastructure /30 2. Transport /33 2.1. Railroad transport /33 2.2. Maritime transport /34 2.3. Road transport /35 2.4.
    [Show full text]
  • NATIONAL PROTECTED AREAS of the RUSSIAN FEDERATION: of the RUSSIAN FEDERATION: AREAS PROTECTED NATIONAL Vladimir Krever, Mikhail Stishov, Irina Onufrenya
    WWF WWF is one of the world’s largest and most experienced independent conservation WWF-Russia organizations, with almost 5 million supporters and a global network active in more than 19, bld.3 Nikoloyamskaya St., 100 countries. 109240 Moscow WWF’s mission is to stop the degradation of the planet’s natural environment and to build a Russia future in which humans live in harmony with nature, by: Tel.: +7 495 727 09 39 • conserving the world’s biological diversity Fax: +7 495 727 09 38 • ensuring that the use of renewable natural resources is sustainable [email protected] • promoting the reduction of pollution and wasteful consumption. http://www.wwf.ru The Nature Conservancy The Nature Conservancy - the leading conservation organization working around the world to The Nature Conservancy protect ecologically important lands and waters for nature and people. Worldwide Office The mission of The Nature Conservancy is to preserve the plants, animals and natural 4245 North Fairfax Drive, Suite 100 NNATIONALATIONAL PPROTECTEDROTECTED AAREASREAS communities that represent the diversity of life on Earth by protecting the lands and waters Arlington, VA 22203-1606 they need to survive. Tel: +1 (703) 841-5300 http://www.nature.org OOFF TTHEHE RRUSSIANUSSIAN FFEDERATION:EDERATION: MAVA The mission of the Foundation is to contribute to maintaining terrestrial and aquatic Fondation pour la ecosystems, both qualitatively and quantitatively, with a view to preserving their biodiversity. Protection de la Nature GGAPAP AANALYSISNALYSIS To this end, it promotes scientific research, training and integrated management practices Le Petit Essert whose effectiveness has been proved, while securing a future for local populations in cultural, 1147 Montricher, Suisse economic and ecological terms.
    [Show full text]
  • Siberia, the Wandering Northern Terrane, and Its Changing Geography Through the Palaeozoic ⁎ L
    Earth-Science Reviews 82 (2007) 29–74 www.elsevier.com/locate/earscirev Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic ⁎ L. Robin M. Cocks a, , Trond H. Torsvik b,c,d a Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK b Center for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, Trondheim, N-7401, Norway c Institute for Petroleum Technology and Applied Geophysics, Norwegian University of Science and Technology, N-7491 NTNU, Norway d School of Geosciences, Private Bag 3, University of the Witwatersrand, WITS, 2050, South Africa Received 27 March 2006; accepted 5 February 2007 Available online 15 February 2007 Abstract The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian
    [Show full text]