Modular Organization and Composability of RNA

Total Page:16

File Type:pdf, Size:1020Kb

Modular Organization and Composability of RNA University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2009 Modular Organization and Composability of RNA Miler T. Lee University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Biology Commons, Computational Biology Commons, Evolution Commons, Genomics Commons, and the Molecular and Cellular Neuroscience Commons Recommended Citation Lee, Miler T., "Modular Organization and Composability of RNA" (2009). Publicly Accessible Penn Dissertations. 244. https://repository.upenn.edu/edissertations/244 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/244 For more information, please contact [email protected]. Modular Organization and Composability of RNA Abstract Life is organized. Organization is largely achieved via composability -- that at some level of abstraction, a system consists of smaller parts that serve as building blocks -- and modularity -- the tendency for these blocks to be independent units that recombine to form functionally different systems. Here, we explore the organization, composition, and modularity of ribonucleic acid (RNA) molecules, biopolymers that adopt three-dimensional structures according to their specific nucleotide sequence. eW address three themes: the efficacy of specific sequenceso t function as modules or as the context in which modules are inserted; the sources of novel modules in modern genomes; and the resolutions at which functionally relevant modules exist in RNA. First, we investigate the structural modularity of RNA sequences by developing the Self-Containment Index, a method to quantify in silico the degree to which RNA structures deviate in changing genomic contexts. We show that although structural modularity is not a general property of natural RNAs, precursor microRNAs are strongly modular, which we hypothesize is a consequence of their unique biogenesis and evolutionary history. Next, we consider the role of modularity in the regulation of subcellular localization. We identify a novel module, the ID element retrotransposon, contained in the introns of rat neuronal genes, and demonstrate that it is sufficiento t drive localization of mRNAs to dendrites via regulated retention of intron sequence. This mechanism shows that introns can provide the context for functional module insertion, and that transposable elements can be co-opted as source material for these modules. As a further example, we present evidence that a Camk2a localization signal can be mimicked by Alu retrotransposon sequence. Finally, we propose that RNAs can be conceptually decomposed into sets of basic RNA functions. To identify these, we automatically construct an ontology of RNA function using Wikipedia documents. We show that many of the functions encoded in ontology terms are significantly associated with common structural features, highlighting an underlying structure-function relationship that can be encapsulated in elemental RNA building-block units. In sum, we show how the phenomena of organization, composition, and modularity can frame RNA research in an evolutionary context. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Genomics & Computational Biology First Advisor Junhyong Kim Keywords RNA structure, transposons, intron retention, transcript localization, evolution, modularity Subject Categories Bioinformatics | Biology | Computational Biology | Evolution | Genomics | Molecular and Cellular Neuroscience This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/244 COPYRIGHT Miler T.S. Lee 2009 “It is interesting that people try to find meaningful patterns in things that are essentially random.” — Lt. Cmdr. Data, Star Trek: The Next Generation, Ep. 5.22 iii Acknowledgements Inspiration and guidance come in many forms. This work would not have been possi- ble without the help of countless individuals and entities, some of whom I can name below: My advisor, Dr. Junhyong Kim, who deserves more praise than I am capable of lavishing. Current and former members of the Kim Lab, who despite working on disparate topics, have helped guide my research and refine my ideas. Our collaborator Dr. James Eberwine and his lab, with whom we’ve closely worked on several fruitful projects. In particular, Chapter 4 of this dissertation contains work from a project that was a joint effort between his student Peter Buckley and myself. The members of my dissertation committee: Dr. Harold Riethman, Dr. James Eberwine, Dr. Sampath Kannan, Dr. Scott Poethig, and formerly Dr. Artemis Hatzigeorgiou, who have each provided me with several years of helpful feedback. Numerous other mentors, colleagues, and staff at the University of Pennsylvania, particularly the faculty who were instrumental in drawing me to Penn, including Dr. Richard Spielman, Dr. Warren Ewens, Dr. Maja Bucan, and Dr. Lyle Ungar; as well as my fellow students in the Genomics and Computational Biology Program, whose combined talents are the greatest strength of this graduate group; and the many graduate group coordinators who have occupied the office in 1425 Blockley Hall and iv have done their part to manage the chaos. The U.S. Department of Energy for providing me with a generous fellowship to fund my doctoral work, for which I am truly grateful. Also, the staff at the Krell Institute for their continued stewardship of the fellowship and an awe-inspiring group of young computational scientists. Mentors and colleagues at several other institutions who have contributed to my never-ending education: Sandia National Laboratories; The University of California, Berkeley; Stanford University; The College Preparatory School; and Bentley School. The various and sundry locations where I wrote the bulk of this dissertation: Good Karma; Brew; the Penn Bookstore; Barnes and Noble; Borders; Starbucks; the Walnut Bridge Coffee House; the Coffee Bar at the Radisson; Last Drop Coffee House; the Green Line Cafe; LaVa Cafe; Chapterhouse; Lovers and Madmen; Sweet Endings; Capo Giro; Rittenhouse, Washington, and Franklin Squares; Clark Park; the Schuylkill Banks; Locust Walk; the steps of the National Constitution Center; the basement of the Mellon Independence Center; Andy’s Laundry; the Penn Graduate Student Center; several living rooms, dining rooms, and kitchens; my bed; the shower; the 14th floor of Blockley Hall; the San Leandro Public Library; Delta Airlines flights 3229, 3432, 1643, 1644, 3212, and 2504; the Philadelphia, Minneapolis-St. Paul, Salt Lake City, and Oakland International Airports; SEPTA bus routes 12, 21, 40, 42, and 44 and regional rail route R1; and my office in the Carolyn Lynch Laboratory. And lastly, in order but not in importance: my parents, who from the day I was born taught me through their words, their actions, and their love how to live a life of meaning; and my friends, without whom I’d be a very dull boy indeed. v This work was supported by the Department of Energy Computational Science Grad- uate Fellowship Program of the Office of Science and National Nuclear Security Ad- ministration in the Department of Energy under contract DE-FG02-97ER25308. vi ABSTRACT MODULAR ORGANIZATION AND COMPOSABILITY OF RNA Miler T.S. Lee Supervisor: Junhyong Kim, Ph.D. Life is organized. Organization is largely achieved via composability – that at some level of abstraction, a system consists of smaller parts that serve as building blocks – and modularity – the tendency for these blocks to be independent units that re- combine to form functionally different systems. Here, we explore the organization, composition, and modularity of ribonucleic acid (RNA) molecules, biopolymers that adopt three-dimensional structures according to their specific nucleotide sequence. We address three themes: the efficacy of specific sequences to function as modules or as the context in which modules are inserted; the sources of novel modules in modern genomes; and the resolutions at which functionally relevant modules exist in RNA. First, we investigate the structural modularity of RNA sequences by developing the Self-Containment Index, a method to quantify in silico the degree to which RNA structures deviate in changing genomic contexts. We show that although structural modularity is not a general property of natural RNAs, precursor microRNAs are strongly modular, which we hypothesize is a consequence of their unique biogenesis and evolutionary history. Next, we consider the role of modularity in the regulation of subcellular localiza- tion. We identify a novel module, the ID element retrotransposon, contained in the introns of rat neuronal genes, and demonstrate that it is sufficient to drive localization vii of mRNAs to dendrites via regulated retention of intron sequence. This mechanism shows that introns can provide the context for functional module insertion, and that transposable elements can be co-opted as source material for these modules. As a fur- ther example, we present evidence that a Camk2a localization signal can be mimicked by Alu retrotransposon sequence. Finally, we propose that RNAs can be conceptually decomposed into sets of basic RNA functions. To identify these, we automatically construct an ontology of RNA function using Wikipedia documents. We show that many of the functions encoded in ontology terms are significantly associated with common structural features, high- lighting an underlying structure-function relationship that can be
Recommended publications
  • Identification and Characterization of a Selenoprotein Family Containing a Diselenide Bond in a Redox Motif
    Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif Valentina A. Shchedrina, Sergey V. Novoselov, Mikalai Yu. Malinouski, and Vadim N. Gladyshev* Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664 Edited by Arne Holmgren, Karolinska Institute, Stockholm, Sweden, and accepted by the Editorial Board July 13, 2007 (received for review April 16, 2007) Selenocysteine (Sec, U) insertion into proteins is directed by trans- notable exception. Vertebrate selenoprotein P (SelP) has 10–18 lational recoding of specific UGA codons located upstream of a Sec, whose insertion is governed by two SECIS elements (11). It is stem-loop structure known as Sec insertion sequence (SECIS) ele- thought that Sec residues in SelP (perhaps with the exception of the ment. Selenoproteins with known functions are oxidoreductases N-terminal Sec residue present in a UxxC motif) have no redox or containing a single redox-active Sec in their active sites. In this other catalytic functions. work, we identified a family of selenoproteins, designated SelL, Selenoproteins with known functions are oxidoreductases con- containing two Sec separated by two other residues to form a taining catalytic redox-active Sec (12). Their Cys mutants are UxxU motif. SelL proteins show an unusual occurrence, being typically 100–1,000 times less active (13). Although there are many present in diverse aquatic organisms, including fish, invertebrates, known selenoproteins, proteins containing diselenide bonds have and marine bacteria. Both eukaryotic and bacterial SelL genes use not been described. Theoretically, such proteins could exist, but the single SECIS elements for insertion of two Sec.
    [Show full text]
  • Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 453642, 14 pages doi:10.1155/2010/453642 Review Article Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea Michael Rother1 and Joseph A. Krzycki2 1 Institut fur¨ Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universitat,¨ Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany 2 Department of Microbiology, The Ohio State University, 376 Biological Sciences Building 484 West 12th Avenue Columbus, OH 43210-1292, USA Correspondence should be addressed to Michael Rother, [email protected] andJosephA.Krzycki,[email protected] Received 15 June 2010; Accepted 13 July 2010 Academic Editor: Jerry Eichler Copyright © 2010 M. Rother and J. A. Krzycki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism. 1. Introduction found to correspond to pyrrolysine in the crystal structure [9, 10] and have its own tRNA [11].
    [Show full text]
  • Identification and Characterization of Fep15, a New Selenocysteine-Containing Member of the Sep15 Protein Family
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Vadim Gladyshev Publications Biochemistry, Department of March 2006 Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family Sergey V. Novoselov University of Nebraska-Lincoln Deame Hua University of Nebraska-Lincoln A. V. Lobanov University of Nebraska-Lincoln Vadim N. Gladyshev University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev Part of the Biochemistry, Biophysics, and Structural Biology Commons Novoselov, Sergey V.; Hua, Deame; Lobanov, A. V.; and Gladyshev, Vadim N., "Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family" (2006). Vadim Gladyshev Publications. 62. https://digitalcommons.unl.edu/biochemgladyshev/62 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biochemical Journal 394:3 (March 15, 2006), pp. 575–579. doi: 10.1042/BJ20051569. Copyright © 2005 The Biochemical Society, London. Used by permission. Submitted September 22, 2005; revised October 18, 2005; accepted and prepublished online October 20, 2005; published online February 24, 2006. Identifi cation and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family Sergey V. Novoselov, Deame Hua, Alexey V. Lobanov, and Vadim N. Gladyshev* Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE 68588 *Corresponding author; email: [email protected] Abstract: Sec (selenocysteine) is a rare amino acid in proteins.
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Regulation of Finp Transcription by DNA Adenine Methylation in The
    JOURNAL OF BACTERIOLOGY, Aug. 2005, p. 5691–5699 Vol. 187, No. 16 0021-9193/05/$08.00ϩ0 doi:10.1128/JB.187.16.5691–5699.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Regulation of finP Transcription by DNA Adenine Methylation in the Virulence Plasmid of Salmonella enterica‡ Eva M. Camacho,1 Ana Serna,1 Cristina Madrid,2 Silvia Marque´s,1†Rau´l Ferna´ndez,3 Fernando de la Cruz,3 Antonio Jua´rez,2‡ and Josep Casadesu´s1* Departamento de Gene´tica, Universidad de Sevilla, Apartado 1095, Seville 41080,1 Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 645, Barcelona 08028,2 and Departamento de Biologı´a Molecular, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, Santander 39011,3 Spain Downloaded from Received 23 March 2005/Accepted 16 May 2005 DNA adenine methylase (Dam؊) mutants of Salmonella enterica serovar Typhimurium contain reduced levels of FinP RNA encoded on the virulence plasmid. Dam methylation appears to regulate finP transcription, rather than FinP RNA stability or turnover. The finP promoter includes canonical ؊10 and ؊35 modules and depends on the ␴70 factor. Regulation of finP transcription by Dam methylation does not require DNA sequences ,upstream from the ؊35 module, indicating that Dam acts at the promoter itself or downstream. Unexpectedly /a GATC site overlapping with the ؊10 module is likewise dispensable for Dam-mediated regulation. These http://jb.asm.org observations indicate that Dam methylation regulates finP transcription indirectly and suggest the involvement of a host factor(s) responsive to the Dam methylation state of the cell.
    [Show full text]
  • Fast and Reliable Prediction of Noncoding Rnas
    Fast and reliable prediction of noncoding RNAs Stefan Washietl*, Ivo L. Hofacker*, and Peter F. Stadler*†‡ *Department of Theoretical Chemistry and Structural Biology, University of Vienna, Wa¨hringerstrasse 17, A-1090 Wien, Austria; and †Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Ha¨rtelstrasse 16-18, D-04107 Leipzig, Germany Communicated by Hans Frauenfelder, Los Alamos National Laboratory, Los Alamos, NM, December 14, 2004 (received for review November 2, 2004) We report an efficient method for detecting functional RNAs. The served noncoding elements in mammalian (or, more generally, approach, which combines comparative sequence analysis and vertebrate) genomes, and it must be expected that a significant structure prediction, already has yielded excellent results for a fraction of them are functional RNAs. small number of aligned sequences and is suitable for large-scale Possible candidates, however, have been identified only spo- genomic screens. It consists of two basic components: (i) a measure radically so far (19, 21), simply because there are no reliable tools for RNA secondary structure conservation based on computing a to scan multiple sequence alignments for functional RNAs. The consensus secondary structure, and (ii) a measure for thermody- most widely used program QRNA (22), which has been success- namic stability, which, in the spirit of a z score, is normalized with fully used to identify ncRNAs in bacteria (23) and yeast (24), is respect to both sequence length and base composition but can be not suitable for screens of large genomes. QRNA is limited to calculated without sampling from shuffled sequences. Functional pairwise alignments, and its reliability is low, especially if the RNA secondary structures can be identified in multiple sequence evolutionary distance of the two sequences lies outside of the alignments with high sensitivity and high specificity.
    [Show full text]
  • Comparing Tools for Non-Coding RNA Multiple Sequence Alignment Based On
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 1 1 TITLE 2 RNAconTest: Comparing tools for non-coding RNA multiple sequence alignment based on 3 structural consistency 4 Running title: RNAconTest: benchmarking comparative RNA programs 5 Author: Erik S. Wright1,* 6 1 Department of Biomedical Informatics, University of Pittsburgh (Pittsburgh, PA) 7 * Corresponding author: Erik S. Wright ([email protected]) 8 Keywords: Multiple sequence alignment, Secondary structure prediction, Benchmark, non- 9 coding RNA, Consensus secondary structure 10 Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 2 11 ABSTRACT 12 The importance of non-coding RNA sequences has become increasingly clear over the past 13 decade. New RNA families are often detected and analyzed using comparative methods based on 14 multiple sequence alignments. Accordingly, a number of programs have been developed for 15 aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for 16 these tasks remain unclear because existing benchmarks contain too few sequences belonging to 17 only a small number of RNA families. RNAconTest (RNA consistency test) is a new 18 benchmarking approach relying on the observation that secondary structure is often conserved 19 across highly divergent RNA sequences from the same family. RNAconTest scores multiple 20 sequence alignments based on the level of consistency among known secondary structures 21 belonging to reference sequences in their output alignment. Similarly, consensus secondary 22 structure predictions are scored according to their agreement with one or more known structures 23 in a family.
    [Show full text]
  • INTRODUCTION Sirna and Rnai
    J Korean Med Sci 2003; 18: 309-18 Copyright The Korean Academy ISSN 1011-8934 of Medical Sciences RNA interference (RNAi) is the sequence-specific gene silencing induced by dou- ble-stranded RNA (dsRNA). Being a highly specific and efficient knockdown tech- nique, RNAi not only provides a powerful tool for functional genomics but also holds Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National a promise for gene therapy. The key player in RNAi is small RNA (~22-nt) termed University, Seoul, Korea siRNA. Small RNAs are involved not only in RNAi but also in basic cellular pro- cesses, such as developmental control and heterochromatin formation. The inter- Received : 19 May 2003 esting biology as well as the remarkable technical value has been drawing wide- Accepted : 23 May 2003 spread attention to this exciting new field. V. Narry Kim, D.Phil. Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, Korea Key Words : RNA Interference (RNAi); RNA, Small interfering (siRNA); MicroRNAs (miRNA); Small Tel : +82.2-887-8734, Fax : +82.2-875-0907 hairpin RNA (shRNA); mRNA degradation; Translation; Functional genomics; Gene therapy E-mail : [email protected] INTRODUCTION established yet, testing 3-4 candidates are usually sufficient to find effective molecules. Technical expertise accumulated The RNA interference (RNAi) pathway was originally re- in the field of antisense oligonucleotide and ribozyme is now cognized in Caenorhabditis elegans as a response to double- being quickly applied to RNAi, rapidly improving RNAi stranded RNA (dsRNA) leading to sequence-specific gene techniques.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Hammerhead Ribozymes Against Virus and Viroid Rnas
    Hammerhead Ribozymes Against Virus and Viroid RNAs Alberto Carbonell, Ricardo Flores, and Selma Gago Contents 1 A Historical Overview: Hammerhead Ribozymes in Their Natural Context ................................................................... 412 2 Manipulating Cis-Acting Hammerheads to Act in Trans ................................. 414 3 A Critical Issue: Colocalization of Ribozyme and Substrate . .. .. ... .. .. .. .. .. ... .. .. .. .. 416 4 An Unanticipated Participant: Interactions Between Peripheral Loops of Natural Hammerheads Greatly Increase Their Self-Cleavage Activity ........................... 417 5 A New Generation of Trans-Acting Hammerheads Operating In Vitro and In Vivo at Physiological Concentrations of Magnesium . ...... 419 6 Trans-Cleavage In Vitro of Short RNA Substrates by Discontinuous and Extended Hammerheads ........................................... 420 7 Trans-Cleavage In Vitro of a Highly Structured RNA by Discontinuous and Extended Hammerheads ........................................... 421 8 Trans-Cleavage In Vivo of a Viroid RNA by an Extended PLMVd-Derived Hammerhead ........................................... 422 9 Concluding Remarks and Outlooks ........................................................ 424 References ....................................................................................... 425 Abstract The hammerhead ribozyme, a small catalytic motif that promotes self- cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically
    [Show full text]
  • Rna Ligation by Hammerhead Ribozymes and Dnazyme In
    RNA LIGATION BY HAMMERHEAD RIBOZYMES AND DNAZYME IN PLAUSIBLE PREBIOTIC CONDITIONS A Dissertation Presented to The Academic Faculty by Lively Lie In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Biology Georgia Institute of Technology DECEMBER 2015 COPYRIGHT 2015 BY LIVELY LIE RNA LIGATION BY HAMMERHEAD RIBOZYMES AND DNAZYME IN PLAUSIBLE PREBIOTIC CONDITIONS Approved by: Dr. Roger M. Wartell, Advisor Dr. Eric Gaucher School of Biology School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Loren D. Williams Dr. Fredrik Vannberg School of Chemistry & Biochemistry School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Nicholas Hud School of Chemistry & Biochemistry Georgia Institute of Technology Date Approved: August 13, 2015 ACKNOWLEDGEMENTS First, I would like to thank my family. Without the support of my mother and father, I would not have reached this far. To my husband, I thank him for his patience, love, and his knowledge of programming and computers. I would also like to thank the undergraduate students Rachel Hutto, Philip Kaltman, and Audrey Calvird who contributed to the research in this thesis and the lab technicians Eric O’Neill, Jessica Bowman, and Shweta Biliya, who seemed to know the answers to my troubleshooting. Finally, many thanks goes to my advisor Dr. Roger Wartell, always a helpful, patient, and kind mentor. iv TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iv LIST OF TABLES vii LIST OF FIGURES viii LIST OF SYMBOLS
    [Show full text]
  • Annale D890ahlfors.Pdf (5.211Mb)
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. D OSA - TOM. 890 MEDICA - ODONTOLOGICA INTERLEUKIN-4 INDUCED LEUKOCYTE DIFFERENTIATION by Helena Ahlfors TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2009 From Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; Department of Medical Biochemistry and Molecular Biology, University of Turku and National Graduate School of Informational and Structural Biology Supervised by Professor Riitta Lahesmaa, M.D., Ph.D. Turku Centre for Biotechnology University of Turku and Åbo Akademi University Turku, Finland Reviewed by Professor Risto Renkonen M.D., Ph.D. Transplantation laboratory Haartman Institute University of Helsinki Helsinki, Finland and Docent Panu Kovanen, M.D., Ph.D. Haartman Institute Department of Pathology University of Helsinki Helsinki, Finland Opponent Assistant Professor Mohamed Oukka, Ph.D. Seattle Children’s Research Institute Department of Immunology University of Washington Seattle, USA ISBN 978-951-29-4183-4 (PRINT) ISBN 978-951-29-4184-1 (PDF) ISSN 0355-9483 Painosalama Oy – Turku, Finland 2009 Think where mans glory most begins and ends, and say my glory was I had such friends. William Butler Yeats (1865 – 1939) ABSTRACT Helena Ahlfors Interleukin-4 induced leukocyte differentiation Turku Centre for Biotechnology, University of Turku and Åbo Akademi University Department of Medical Biochemistry and Genetics, University of Turku National Graduate School of Informational and Structural Biology, 2009 Monocytes, macrophages and dendritic cells (DCs) are important mediators of innate immune system, whereas T lymphocytes are the effector cells of adaptive immune responses. DCs play a crucial role in bridging innate and adaptive immunity. Naïve CD4+ Th progenitors (Thp) differentiate to functionally distinct effector T cell subsets including Th1, Th2 and Th17 cells, which while being responsible for specific immune functions have also been implicated in pathological responses, such as autoimmunity, asthma and allergy.
    [Show full text]