Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys Coriacea)

Total Page:16

File Type:pdf, Size:1020Kb

Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys Coriacea) U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Guillaume Feuillet U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Karen L. Eckert 1 Bryan P. Wallace 2 John G. Frazier 3 Scott A. Eckert 4 Peter C.H. Pritchard 5 1 Wider Caribbean Sea Turtle Conservation Network, Ballwin, MO 2 Conservation International, Arlington, VA 3 Smithsonian Institution, Front Royal, VA 4 Principia College, Elsah, IL 5 Chelonian Research Institute, Oviedo, FL Author Contact Information: Recommended citation: Eckert, K.L., B.P. Wallace, J.G. Frazier, S.A. Eckert, Karen L. Eckert, Ph.D. and P.C.H. Pritchard. 2012. Synopsis of the biological Wider Caribbean Sea Turtle Conservation Network data on the leatherback sea turtle (Dermochelys (WIDECAST) coriacea). U.S. Department of Interior, Fish and 1348 Rusticview Drive Wildlife Service, Biological Technical Publication Ballwin, Missouri 63011 BTP-R4015-2012, Washington, D.C. Phone: (314) 954-8571 E-mail: [email protected] For additional copies or information, contact: Sandra L. MacPherson Bryan P. Wallace, Ph.D. National Sea Turtle Coordinator Sea Turtle Flagship Program U.S. Fish and Wildlife Service Conservation International 7915 Baymeadows Way, Ste 200 2011 Crystal Drive Jacksonville, Florida 32256 Suite 500 Phone: (904) 731-3336 Arlington, Virginia 22202 E-mail: [email protected] Phone: (703) 341-2663 E-mail: [email protected] Series Senior Technical Editor: Stephanie L. Jones John (Jack) G. Frazier, Ph.D. Nongame Migratory Bird Coordinator Smithsonian Conservation Biology Institute U.S. Fish and Wildlife Service, Region 6 1500 Remount Road P.O. Box 25486 DFC Front Royal, Virginia 22630 Denver, Colorado 80225 Phone: (540) 635-6564 Phone: (303) 236-4409 E-mail: [email protected], [email protected] E-mail: [email protected] Scott A. Eckert, Ph.D. Wider Caribbean Sea Turtle Conservation Network (WIDECAST) Department of Biology and Natural Resources Principia College Elsah, Illinois 62028 Phone: (314) 566-6301 E-mail: [email protected] Peter C.H. Pritchard, Ph.D. Chelonian Research Institute 401 South Central Avenue Oviedo, Florida 32765 Phone: (407) 365-6347 E-mail: [email protected] Editor: Sandra L. MacPherson National Sea Turtle Coordinator U.S. Fish and Wildlife Service 7915 Baymeadows Way, Ste 200 Jacksonville, Florida 32256 Phone: (904) 731-3336 E-mail: [email protected] ISSN 2160-9498 Electronic ISSN 2160-9497 Biological Technical Publications online: http://library.fws.gov/BiologicalTechnicalPublications.html iv Synopsis of the Biological Data on the Leatherback Sea Turtle Table of Contents List of Figures ................................................................................................................ ix List of Tables .................................................................................................................. x Acknowledgments ........................................................................................................ xii Executive Summary ��������������������������������������������������������������������������������������������������������� 1 Chapter 1: Identity ........................................................................................................... 2 Nomenclature ................................................................................................................... 2 Valid Name ................................................................................................................... 2 Synonymy .................................................................................................................... 2 Type Locality ................................................................................................................ 3 Taxonomy ........................................................................................................................ 3 Affinities ���������������������������������������������������������������������������������������������������������������������� 3 Diagnosis ................................................................................................................. 4 Taxonomic Status ����������������������������������������������������������������������������������������������������������� 4 Subspecies ................................................................................................................... 5 Standard Common Names ................................................................................................ 5 Definition of Size Categories .............................................................................................. 5 Morphology ���������������������������������������������������������������������������������������������������������������������� 6 Description................................................................................................................... 6 External Morphology and Coloration ..................................................................................12 Coloration ...............................................................................................................13 Eggs ......................................................................................................................13 Internal Morphology ......................................................................................................13 Alimentary System ....................................................................................................14 Respiratory System ...................................................................................................15 Circulatory System ....................................................................................................15 Urogenital System .....................................................................................................15 Muscular System ......................................................................................................16 Cranial Morphology .......................................................................................................16 Skull ......................................................................................................................16 Post-Cranial Skeleton .................................................................................................17 Cytomorphology ...........................................................................................................18 Biochemistry ...............................................................................................................19 Karyotype ���������������������������������������������������������������������������������������������������������������19 Table of Contents v Chapter 2: Distribution ....................................................................................................21 Total Area .......................................................................................................................21 Differential Distribution ......................................................................................................24 Hatchlings ..................................................................................................................24 Juveniles and Subadults ..................................................................................................24 Adults ������������������������������������������������������������������������������������������������������������������������24 Determinants of Distributional Changes ...................................................................................25 Hybridization �������������������������������������������������������������������������������������������������������������������25 Chapter 3: Bionomics and Life History ...............................................................................26 Reproduction ...................................................................................................................26 Sexual Dimorphism .......................................................................................................26 Age at Maturity ............................................................................................................26 Courtship and Mating .....................................................................................................27 Nesting Behavior ..........................................................................................................28 Emergence from the sea onto the nesting beach ..................................................................28 Overland traverse to and selection of a suitable nest site .......................................................29 Excavation of a body pit ..............................................................................................30 Excavation of the nest chamber .....................................................................................30 Oviposition ..............................................................................................................30 Filling the nest .........................................................................................................30 Covering and concealing the nest site ..............................................................................30
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Pfizer Vaccine
    Find a Walgreens near you to receive an additional dose of the Pfizer COVID-19 vaccine Vaccines subject to availability, State-, age-, and health-related restrictions may apply. PFIZER STORES State Store Address City Zipcode AK 15092 1470 W NORTHERN LIGHTS BLVD ANCHORAGE 99503 AK 13656 725 E NORTHERN LIGHTS BLVD ANCHORAGE 99503 AK 12680 2197 W DIMOND BLVD ANCHORAGE 99515 AK 15653 4353 LAKE OTIS PARKWAY ANCHORAGE 99508 AK 13449 12405 BRANDON ST ANCHORAGE 99515 AK 15654 2550 E 88TH AVE ANCHORAGE 99507 AK 15362 12051 OLD GLENN HWY EAGLE RIVER 99577 AK 15944 530 OLD STEESE HWY FAIRBANKS 99701 AL 9951 9301 HIGHWAY 119 ALABASTER 35007 AL 11279 7155 US HIGHWAY 431 ALBERTVILLE 35950 AL 11819 1401 GOLDEN SPRINGS RD ANNISTON 36207 AL 19256 2413 HIGHWAY 431 NORTH ANNISTON 36206 AL 7951 800 QUINTARD AVE ANNISTON 36201 AL 11651 4700 HIGHWAY 280 BIRMINGHAM 35242 AL 6034 101 GREEN SPRINGS HWY BIRMINGHAM 35209 AL 7791 101 DOUG BAKER BLVD BIRMINGHAM 35242 AL 7245 668 LOMB AVE SW BIRMINGHAM 35211 AL 7306 4496 VALLEYDALE RD BIRMINGHAM 35242 AL 6035 2101 RICHARD ARRINGTON JR BLVD S BIRMINGHAM 35209 AL 15144 3020 CLAIRMONT AVE S BIRMINGHAM 35205 AL 10333 3150 GREEN VALLEY RD BIRMINGHAM 35243 AL 11469 9325 PARKWAY E BIRMINGHAM 35215 AL 4846 2301 CENTER POINT PKWY BIRMINGHAM 35215 AL 10965 920 US HIGHWAY 431 BOAZ 35957 AL 11531 16468 HIGHWAY 280 CHELSEA 35043 AL 15205 444 2ND AVE NW CULLMAN 35055 AL 11180 1700 2ND AVE SW CULLMAN 35055 AL 5606 3025 US HIGHWAY 98 DAPHNE 36526 AL 9976 1127 6TH AVE SE DECATUR 35601 AL 7404 2041 E MAIN ST DOTHAN 36301 AL 7405 2940
    [Show full text]
  • Biodiversidad De Sanguijuelas (Annelida: Euhirudinea) En México
    Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 DOI: 10.7550/rmb.33212 DOI: 10.7550/rmb.33212183 Biodiversidad de sanguijuelas (Annelida: Euhirudinea) en México Biodiversity of leeches (Annelida: Euhirudinea) in Mexico Alejandro Oceguera-Figueroa1 y Virginia León-Règagnon2 1Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México. Tercer circuito s/n, Ciudad Universitaria, 04510 México, D. F., México. Laboratorio de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España. Calle Catedrático José Beltrán 2, Paterna, 46980 Valencia, España. 2Estación de Biología Chamela, Sede Colima. Instituto de Biología, Universidad Nacional Autónoma de México, 48980 San Patricio, Jalisco, México. [email protected] Resumen. El número total de especies de sanguijuelas verdaderas (Annelida: Euhirudinea) registradas en México asciende a 31, las cuales representan el 4.5% de las aproximadamente 680 especies conocidas en el mundo. De las 14 familias reconocidas de euhirudíneos, 10 de ellas tiene representantes en México. Veinte especies y los géneros Limnobdella y Diestecostoma pueden ser considerados como endémicos de México. Los estados de Jalisco y Michoacán son los mejor representados con 10 y 11 registros respectivamente, por el contrario Baja California, Campeche, Quintana Roo y Zacatecas carecen completamente de registros. Palabras clave: sanguijuelas, hirudíneos, Euhirudinea, México. Abstract. The total number of true leech species (Annelida: Euhirudinea) recorded in Mexico now reaches 31, representing 4.5% of the approximately 680 known species in the world. Of the 14 currently recognized families of euhirudineans, 10 occur in Mexico. Twenty species and the genera Diestecostoma and Limnobdella can be considered endemic to Mexico.
    [Show full text]
  • Towards the Acoustic Estimation of Jellyfish Abundance
    MARINE ECOLOGY PROGRESS SERIES Vol. 295: 105–111, 2005 Published June 23 Mar Ecol Prog Ser Towards the acoustic estimation of jellyfish abundance Andrew S. Brierley1,*, David C. Boyer2, 6, Bjørn E. Axelsen3, Christopher P. Lynam1, Conrad A. J. Sparks4, Helen J. Boyer2, Mark J. Gibbons5 1Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, UK 2National Marine Information and Research Centre, PO Box 912, Swakopmund, Namibia 3Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway 4Faculty of Applied Sciences, Cape Technikon, PO Box 652, Cape Town 8000, South Africa 5Zoology Department, University of Western Cape, Private Bag X 17, Bellville 7535, South Africa 6Present address: Fisheries & Environmental Research Support, Orchard Farm, Cockhill, Castle Cary, Somerset BA7 7NY, UK ABSTRACT: Acoustic target strengths (TSs) of the 2 most common large medusae, Chrysaora hysoscella and Aequorea aequorea, in the northern Benguela (off Namibia) have previously been estimated (at 18, 38 and 120 kHz) from acoustic data collected in conjunction with trawl samples, using the ‘comparison method’. These TS values may have been biased because the method took no account of acoustic backscatter from mesozooplankton. Here we report our efforts to improve upon these estimates, and to determine TS additionally at 200 kHz, by conducting additional sampling for mesozooplankton and fish larvae, and accounting for their likely contribution to the total backscatter. Published sound scattering models were used to predict the acoustic backscatter due to the observed numerical densities of mesozooplankton and fish larvae (solving the forward problem). Mean volume backscattering due to jellyfish alone was then inferred by subtracting the model-predicted values from the observed water-column total associated with jellyfish net samples.
    [Show full text]
  • Universitat De Valencia Facultad De Ciencias Biologicas Tesis
    UNIVERSITAT DE VALENCIA FACULTAD DE CIENCIAS BIOLOGICAS TESIS DOCTORAL ESTUDIO TAXONOMICO Y ECOLOGICO DE LA PARASITOFAUNA DEL CALDERON COMUN, GLOBICEPHALA HELAS (TRAILL, 1809), EN LAS AGUAS DE EUROPA’ por Juan Antonio Bal buena Diaz-Pinés Di rector Juan Antonio Raga Esteve Valencia junio, 1991 * Trabajo encuadrado en el proyecto PB87-997 de la DGICYT UMI Number: U607653 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Disscrrlation Publishíng UMI U607653 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying underTitle 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 Dr. Moliner, 50 46100 - BURJASOT (Valencia) España UNIVERSITAT DE VALENCIA DEPARTAMENT DE BIOLOGIA ANIMAL, BIOLOGIA CEL.LULAR. I PARASITOLOGIA D- Juan Antonio Raga Esteve, Profesor Titular de Biología Animal de la Universitat de Valéncia, CERTIFICA que el trabajo titulado “Estudio Taxonómico y Ecológico de la Parasitofaúna del Calderón Común, Clobicephala melas (Traill, 1809), en las Aguas de Europa'*, que presenta D. Juan Antonio Ealbuena Díaz—Pinés para optar al grado de Doctor en Ciencias Biológicas, ha sido realizado en el Departamento de Biología Animal, Biología Celular y Parasitología de la Universitat de Valéncia bajo mi dirección.
    [Show full text]
  • Checklist of the Australian Cirripedia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Jones, D. S., J. T. Anderson and D. T. Anderson, 1990. Checklist of the Australian Cirripedia. Technical Reports of the Australian Museum 3: 1–38. [24 August 1990]. doi:10.3853/j.1031-8062.3.1990.76 ISSN 1031-8062 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ISSN 1031-8062 ISBN 0 7305 7fJ3S 7 Checklist of the Australian Cirripedia D.S. Jones. J.T. Anderson & D.l: Anderson Technical Reports of the AustTalfan Museum Number 3 Technical Reports of the Australian Museum (1990) No. 3 ISSN 1031-8062 Checklist of the Australian Cirripedia D.S. JONES', J.T. ANDERSON*& D.T. AND ER SON^ 'Department of Aquatic Invertebrates. Western Australian Museum, Francis Street. Perth. WA 6000, Australia 2School of Biological Sciences, University of Sydney, Sydney. NSW 2006, Australia ABSTRACT. The occurrence and distribution of thoracican and acrothoracican barnacles in Australian waters are listed for the first time since Darwin (1854). The list comprises 204 species. Depth data and museum collection data (for Australian museums) are given for each species. Geographical occurrence is also listed by area and depth (littoral, neuston, sublittoral or deep). Australian contributions to the biology of Australian cimpedes are summarised in an appendix. All listings are indexed by genus and species. JONES. D.S.. J.T. ANDERSON & D.T. ANDERSON,1990. Checklist of the Australian Cirripedia.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • Jellyfish Aggregations and Leatherback Turtle Foraging Patterns in a Temperate Coastal Environment
    Ecology, 87(8), 2006, pp. 1967–1972 Ó 2006 by the the Ecological Society of America JELLYFISH AGGREGATIONS AND LEATHERBACK TURTLE FORAGING PATTERNS IN A TEMPERATE COASTAL ENVIRONMENT 1 2 2 2 1,3 JONATHAN D. R. HOUGHTON, THOMAS K. DOYLE, MARK W. WILSON, JOHN DAVENPORT, AND GRAEME C. HAYS 1Department of Biological Sciences, Institute of Environmental Sustainability, University of Wales Swansea, Singleton Park, Swansea SA2 8PP United Kingdom 2Department of Zoology, Ecology and Plant Sciences, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland Abstract. Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal ‘‘hotspots’’ during consecutive years (2003–2005). Examination of retro- spective sightings data (.50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations. Key words: aerial survey; Dermochelys coriacea; foraging ecology; gelatinous zooplankton; jellyfish; leatherback turtles; planktivore; predator–prey relationship; Rhizostoma octopus. INTRODUCTION remains the leatherback turtle Dermochelys coriacea that Understanding the distribution of species is central to ranges widely throughout temperate waters during R many ecological studies, yet this parameter is sometimes summer and autumn months (e.g., Brongersma 1972).
    [Show full text]
  • University of Cape Town
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Taxonomy, Systematics and Biogeography of South African Cirripedia (Thoracica) Aiden Biccard Town A thesis submitted in fulfilment of the degreeCape of Master of Science in the Department of Zoology, Faculty of Science, University of Cape Town Supervisor Prof. Charles L. Griffiths University 1 Town “and whatever the man called every livingCape creature, that was its name.” - Genesis 2:19 of University 2 Plagiarism declaration This dissertation documents the results of original research carried out at the Marine Biology Research Centre, Zoology Department, University of Cape Town. This work has not been submitted for a degree at any other university and any assistance I received is fully acknowledged. The following paper is included in Appendix B for consideration by the examiner. As a supervisor of the project undertaken by T. O. Whitehead, I participated in all of the field work and laboratory work involved for the identification of specimens and played a role in the conceptualisation of the project. Figure 1 was compiled by me. Town Whitehead, T. O., Biccard, A. and Griffiths, C. L., 2011. South African pelagic goose barnacles (Cirripedia, Thoracica): substratum preferences and influences of plastic debris on abundance and distribution. Crustaceana, 84(5-6): 635-649.
    [Show full text]
  • HE 1749-2015 Martins-S-Final.Indd
    ©2016 Institute of Parasitology, SAS, Košice DOI 10.1515/helmin-2016-0012 HELMINTHOLOGIA, 53, 2: 195 – 199, 2016 Research Note Helminth fauna of Chelonia mydas (Linnaeus, 1758) in the south of Espírito Santo State in Brasil E. BINOTI1, M. C. GOMES1, A. DE CALAIS JUNIOR1, M. R. WERNECK2, I. V. F. MARTINS1*, J. N. BOELONI1 1Department of Veterinary Medicine, Parasitology Laboratory, Universidade Federal do Espírito Santo, Brazil, E-mail: [email protected]; 2BW Consultoria Veterinária, Rua Ponciano Eugênio Duarte n.º 203, Centro, Ubatuba, SP, CEP 11680-000, Brazil Article info Summary Received August 31, 2015 Due to an inadequate knowledge about threats to the sea turtle, we aimed to evaluate the helminth Accepted December 2, 2015 fauna of Chelonia mydas which had died on the southern coast of Espirito Santo, Brasil and de- scribed the associated tissue pathological lesions. Retrospective and prospective studies on turtle parasites were conducted and tissues samples were collected. 106 of 212 of sea turtles (50 %) were parasitized, and 47 of 106 of infected animals 43.0 % (47/106) were in poor health condition. Seven trematoda families covering 19 different helminths species were identifi ed. Turtles were inhabited with one or more species of parasites, and there was no signifi cant association between parasitism and weakness of the animals. Trematode eggs, with or without giant cells in tissues of various organs were observed. Keywords: green turtles; fl uke; morphology; etiology Introduction For the management and conservation of this species, the estab- lishment of death cause is an important point of concern. There- The green turtle Chelonia mydas can be found from the tropics to fore, further research has to be conducted to identify the causes the temperate zones, with coastal habits, i.e.
    [Show full text]
  • Resource Requirements of the Pacific Leatherback Turtle Population
    Resource Requirements of the Pacific Leatherback Turtle Population T. Todd Jones1,2*, Brian L. Bostrom1, Mervin D. Hastings1,3, Kyle S. Van Houtan2,4, Daniel Pauly5, David R. Jones1 1 Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada, 2 NOAA Fisheries, Pacific Islands Fisheries Science Center, Honolulu, Hawaii, United States of America, 3 Conservation and Fisheries Department, Ministry of Natural Resources and Labour, Government of the British Virgin Islands, Road Town, Tortola, British Virgin Islands, 4 Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, United States of America, 5 Sea Around Us Project, Fisheries Centre, University of British Columbia, Vancouver, British Columbia, Canada Abstract The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.16106 t of jellyfish annually (range 1.0–3.76106) equivalent to 4.26108 megajoules (MJ) (range 2.0–7.46108).
    [Show full text]