There Are Three Species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela Upwelling Ecosystem, Not Two
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Funding (Total $2,552,481) $15,000 2019
CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters. -
Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita .............................................................................................................. -
Title the SYSTEMATIC POSITION of the STAUROMEDUSAE Author(S
THE SYSTEMATIC POSITION OF THE Title STAUROMEDUSAE Author(s) Uchida, Tohru PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1973), 20: 133-139 Issue Date 1973-12-19 URL http://hdl.handle.net/2433/175784 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University THE SYSTEMATIC POSITION OF THE STAUROMEDUSAE ToHRU UCHIDA Biological Laboratory, Imperial Household, Tokyo With 2 Text-figures The Stauromedusae have hitherto been referred together with the Cubomedusae to the subclass Scyphostomidae in the Scyphomedusae. Recently, however, the life cycle of the cubomedusa, Tripedalia cystophora became clear by WERNER, CuTRESS and STUDEBACKER (1971) and it was established that the Cubomedusae only stand in a quite separate position from other orders of Scyphomedusae. On the other hand, WERNER who published several papers on the Scyphozoan polyp, Stephanoscyphus (1966-1971) laid stress on the fact that Stephanoscyphus can be linked directly with the extinct fossil group of the Conulata and concluded that the Coronatae represent the most basic group of all living Scyphomedusae with the exception of Cubomedusae. Such being the case, the systematic position of the Stauromedusae remains proble matical. The present writer is of the opinion that the Stauromedusae are to be entitled to the Ephyridae and are closely related to the Discomedusae, though there occurs no strobilation in the order. The body of Stauromedusae is composed of two parts; the upper octomerous medusan part and the lower tetramerous scyphistoma portion. No strobilation and no ephyra. Throughout their life history, they lack pelagic life entirely; an egg develops to the solid blastula, which becomes to the planula. -
Scyphomedusae of the North Atlantic (2)
FICHES D’IDENTIFICATION DU ZOOPLANCTON Edittes par J. H. F-RASER Marine Laboratory, P.O. Box 101, Victoria Road Aberdeen AB9 8DB, Scotland FICHE NO. 158 SCYPHOMEDUSAE OF THE NORTH ATLANTIC (2) Families : Pelagiidae Cyaneidae Ulmaridae Rhizostomatidae by F. S. Russell Marine Biological Association The Laboratory, Citadel Hill Plymouth, Devon PL1 2 PB, England (This publication may be referred to in the following form: Russell, F. S. 1978. Scyphomedusae of the North Atlantic (2) Fich. Ident. Zooplancton 158: 4 pp.) https://doi.org/10.17895/ices.pub.5144 Conseil International pour 1’Exploration de la Mer Charlottenlund Slot, DK-2920 Charlottenlund Danemark MA1 1978 2 1 2 3' 4 6 5 Figures 1-6: 1. Pelagia noctiluca; 2. Chtysaora hysoscella; 3. Cyanea capillata; 3'. circular muscle; 4. Cyanea lamarckii - circular muscle; 5. Aurelia aurita; 6. Rhizostoma octopus. 3 Order S E M AE 0 ST0 M E AE Gastrovascular sinus divided by radial septa into separate rhopalar and tentacular pouches; without ring-canal. Family Pelagiidae Rhopalar and tentacular pouches simple and unbranched. Genus Pelagia PCron & Lesueur Pelagiidae with eight marginal tentacles alternating with eight marginal sense organs. 1. Pelugiu nocfilucu (ForskB1). Exumbrella with medium-sized warts of various shapes; marginal tentacles with longitudinal muscle furrows embedded in mesogloea; up to 100 mm in diameter. Genus Chrysaora Ptron & Lesueur Pelagiidae with groups of three or more marginal tentacles alternating with eight marginal sense organs. 2. Chrysuoru hysoscellu (L.). Exumbrella typically with 16 V-shaped radial brown markings with varying degrees of pigmentation between them; with dark brown apical circle or spot; with brown marginal lappets; 24 marginal tentacles in groups of three alternating with eight marginal sense organs. -
Cassiopea Xamachana (Upside-Down Jellyfish)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. -
Cnidaria: Cubozoa and Scyphozoa) from the Coast of Rio Grande Do Norte State, Northeast of Brazil
Check List 5(1): 133–138, 2009. ISSN: 1809-127X LISTS OF SPECIES Neritic Jellyfishes (Cnidaria: Cubozoa and Scyphozoa) from the coast of Rio Grande do Norte state, northeast of Brazil Marcelo de Oliveira Soares 1, 4 André Carrara Morandini 2 Helena Matthews-Cascon 3 1 Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Departamento de Paleontologia e Estratigrafia. CEP 91509-900. Porto Alegre, Rio Grande do Sul, Brazil. E-mail: [email protected] 2 Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé. Caixa Postal 119331. CEP 27910-970. Macaé, Rio de Janeiro, Brazil. 3 Universidade Federal do Ceará, Departamento de Biologia. CEP 60451-970. Fortaleza, Ceará, Brazil. 4. Universidade Federal do Piauí, Centro de Ciências da Natureza, Departamento de Ciências Naturais e Arqueologia. CEP 64049-550. Teresina, Piauí, Brazil. Abstract For the entire Brazilian coast, there are 22 published records of scyphozoans. On the other hand, only 35 species of cubozoans were described worldwide, four of them reported for the Brazilian coast. However, little is known about the species of cubozoans and scyphozoans in the Northeastern states of Brazil. The aim of this study was to perform a survey of the jellyfish (Cnidaria: Cubozoa and Scyphozoa) on the coast of Rio Grande do Norte state, Northeast of Brazil. Specimens were collected using trawl net on beaches in the counties of Natal (in 2003) and Tibaú (in 2004). For the Rio Grande do Norte coast there were few records of large jellyfish, and new records of the following cubozoan and scyphozoan species were verified: Chiropsalmus quadrumanus; Chrysaora lactea; Lychnorhiza lucerna and Stomolophus meleagris. -
Quinquecirrha (Scyphomedusa)
MARINE ECOLOGY - PROGRESS SERIES Vol. 19: 39-41. 1984 hblished August 30 Mar. Ecol. Prog. Ser. I I Changes in the lower Chesapeake Bay food chain in presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusa) David Feigenbaum and Michael Kelly Department of Oceanography, Old Dominion University, Norfolk, Virginia 23508. USA ABSTUCT: The abundance of 4 levels of the lower Chesapeake Bay food chain (Chlorophyll a, herbivores, ctenophore Mnemiopsis leidyi, and Scyphomedusa Chrysaora quinquecimha) were moni- tored twice weekly at 4 stations from May 10 through Sep 30, 1982 in the Lafayette and Elizabeth Rivers (Virginia). The herbivore standing stock, largely copepods, declined sharply in late May when M. leidyi appeared, but rebounded a month later when C. quinquecirrha medusae reduced the ctenophore population. Despite the additional presence of Aurelia aurita (Scyphomedusa) from Jul onward, herbivore abundance remained at moderate levels until the end of the study period. Phytoplankton abundance fluctuated and may have been responsible for brief periods of food shortage; however, the major periods of low herbivore abundance do not seem to have been kept low by food limitation. M. leidyi made a modest resurgence in late Aug when the C. quinquecin-ha population underwent its seasonal decline. Our data suggest that C. quinquecirrha contributes to the secondary productivity of the lower Chesapeake Bay by controlling M. leidyi during summer. INTRODUCTION quence of the sharp reduction in zooplankton standing stock is oxygen depletion in the depths of the fjord due Coelenterate medusae are gelatinous organisms to decaying phytoplankton and dying medusae which with fast growth rates and high metabolic require- accumulate there. -
Pulse Perturbations from Bacterial Decomposition of Chrysaora Quinquecirrha (Scyphozoa: Pelagiidae)
Hydrobiologia DOI 10.1007/s10750-012-1042-z JELLYFISH BLOOMS Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha (Scyphozoa: Pelagiidae) Jessica R. Frost • Charles A. Jacoby • Thomas K. Frazer • Andrew R. Zimmerman Ó Springer Science+Business Media B.V. 2012 Abstract Bacteria decomposed damaged and mor- become dominant, and cocci reproduced at a rate that ibund Chrysaora quinquecirrha Desor, 1848 releasing was 30% slower. These results, and those from a pulse of carbon and nutrients. Tissue decomposed in previous studies, suggested that natural assemblages 5–8 days, with 14 g of wet biomass exhibiting a half- may include bacteria that decompose medusae, as well life of 3 days at 22°C, which is 39 longer than as bacteria that benefit from the subsequent release of previous reports. Decomposition raised mean concen- carbon and nutrients. This experiment also indicated trations of organic carbon and nutrients above controls that proteins and other nitrogenous compounds are less by 1–2 orders of magnitude. An increase in nitrogen labile in damaged medusae than in dead or homoge- (16,117 lgl-1) occurred 24 h after increases in nized individuals. Overall, dense patches of decom- phosphorus (1,365 lgl-1) and organic carbon posing medusae represent an important, but poorly (25 mg l-1). Cocci dominated control incubations, documented, component of the trophic shunt that with no significant increase in numbers. In incubations diverts carbon and nutrients incorporated by gelati- of tissue, bacilli increased exponentially after 6 h to nous zooplankton into microbial trophic webs. Keywords Jellyfish Á Scyphomedusae Á Bacterial Guest editors: J. E. -
Scyphozoa: Rhizostomeae: Mastigiidae) from Turkey
Aquatic Invasions (2011) Volume 6, Supplement 1: S27–S28 doi: 10.3391/ai.2011.6.S1.006 Open Access © 2011 The Author(s). Journal compilation © 2011 REABIC Aquatic Invasions Records First record of Phyllorhiza punctata von Lendenfeld, 1884 (Scyphozoa: Rhizostomeae: Mastigiidae) from Turkey Cem Cevik1*, Osman Baris Derici1, Fatma Cevik1 and Levent Cavas2 1Çukurova University, Faculty of Fisheries, Balcalı, Adana, Turkey 2Dokuz Eylül University, Faculty of Science, Department of Chemistry, Division of Biochemistry, Kaynaklar Campus, İzmir, Turkey E-mail: [email protected] (CC), [email protected] (OBD), [email protected] (FC), [email protected] (LC) *Corresponding author Received: 1 December 2010 / Accepted: 11 April 2011/ Published online: 7 May 2011 Abstract The Australian spotted jellyfish Phyllorhiza punctata has been reported from several locations in the Mediterranean, but the present report is the first record from Turkish waters. Juveniles of the Erythrean alien shrimp scad, Alepes djedaba, were observed nestling among its tentacles. Possible vectors are mentioned. Key words: Phyllorhiza punctata, Alepes djedaba, Turkey, non-indigenous species bay of İskenderun (36º44.550N, 36º10.716E, Introduction salinity 38.6 PSU, sea water temperature 25.7ºC). The specimen was kept for 24 hours in a Phyllorhiza punctata von Lendenfeld, 1884 seawater aquarium and then preserved and (Scyphozoa: Rhizostomeae: Mastigiidae) deposited in the museum of Faculty of Fisheries originates in the tropical western Pacific at Çukurova University in Adana (CSFM- (Graham et al. 2003). The species has been CNI/2010-01). widely introduced in the Atlantic (Mienzan and Cornelius 1999; Cutress 1973; Silveira and Cornelius 2000; Graham et al. -
Towards the Acoustic Estimation of Jellyfish Abundance
MARINE ECOLOGY PROGRESS SERIES Vol. 295: 105–111, 2005 Published June 23 Mar Ecol Prog Ser Towards the acoustic estimation of jellyfish abundance Andrew S. Brierley1,*, David C. Boyer2, 6, Bjørn E. Axelsen3, Christopher P. Lynam1, Conrad A. J. Sparks4, Helen J. Boyer2, Mark J. Gibbons5 1Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, UK 2National Marine Information and Research Centre, PO Box 912, Swakopmund, Namibia 3Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway 4Faculty of Applied Sciences, Cape Technikon, PO Box 652, Cape Town 8000, South Africa 5Zoology Department, University of Western Cape, Private Bag X 17, Bellville 7535, South Africa 6Present address: Fisheries & Environmental Research Support, Orchard Farm, Cockhill, Castle Cary, Somerset BA7 7NY, UK ABSTRACT: Acoustic target strengths (TSs) of the 2 most common large medusae, Chrysaora hysoscella and Aequorea aequorea, in the northern Benguela (off Namibia) have previously been estimated (at 18, 38 and 120 kHz) from acoustic data collected in conjunction with trawl samples, using the ‘comparison method’. These TS values may have been biased because the method took no account of acoustic backscatter from mesozooplankton. Here we report our efforts to improve upon these estimates, and to determine TS additionally at 200 kHz, by conducting additional sampling for mesozooplankton and fish larvae, and accounting for their likely contribution to the total backscatter. Published sound scattering models were used to predict the acoustic backscatter due to the observed numerical densities of mesozooplankton and fish larvae (solving the forward problem). Mean volume backscattering due to jellyfish alone was then inferred by subtracting the model-predicted values from the observed water-column total associated with jellyfish net samples. -
Pelagia Benovici Sp. Nov. (Cnidaria, Scyphozoa): a New Jellyfish in the Mediterranean Sea
Zootaxa 3794 (3): 455–468 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:3DBA821B-D43C-43E3-9E5D-8060AC2150C7 Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea STEFANO PIRAINO1,2,5, GIORGIO AGLIERI1,2,5, LUIS MARTELL1, CARLOTTA MAZZOLDI3, VALENTINA MELLI3, GIACOMO MILISENDA1,2, SIMONETTA SCORRANO1,2 & FERDINANDO BOERO1, 2, 4 1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 2CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 3Dipartimento di Biologia e Stazione Idrobiologica Umberto D’Ancona, Chioggia, Università di Padova. 4 CNR – Istituto di Scienze Marine, Genova 5Corresponding authors: [email protected], [email protected] Abstract A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome spe- cies in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochon- drial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp. -
Ectosymbiotic Behavior of Cancer Gracilis and Its Trophic Relationships with Its Host Phacellophora Camtschatica and the Parasitoid Hyperia Medusarum
MARINE ECOLOGY PROGRESS SERIES Vol. 315: 221–236, 2006 Published June 13 Mar Ecol Prog Ser Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum Trisha Towanda*, Erik V. Thuesen Laboratory I, Evergreen State College, Olympia, Washington 98505, USA ABSTRACT: In southern Puget Sound, large numbers of megalopae and juveniles of the brachyuran crab Cancer gracilis and the hyperiid amphipod Hyperia medusarum were found riding the scypho- zoan Phacellophora camtschatica. C. gracilis megalopae numbered up to 326 individuals per medusa, instars reached 13 individuals per host and H. medusarum numbered up to 446 amphipods per host. Although C. gracilis megalopae and instars are not seen riding Aurelia labiata in the field, instars readily clung to A. labiata, as well as an artificial medusa, when confined in a planktonkreisel. In the laboratory, C. gracilis was observed to consume H. medusarum, P. camtschatica, Artemia franciscana and A. labiata. Crab fecal pellets contained mixed crustacean exoskeletons (70%), nematocysts (20%), and diatom frustules (8%). Nematocysts predominated in the fecal pellets of all stages and sexes of H. medusarum. In stable isotope studies, the δ13C and δ15N values for the megalopae (–19.9 and 11.4, respectively) fell closely in the range of those for H. medusarum (–19.6 and 12.5, respec- tively) and indicate a similar trophic reliance on the host. The broad range of δ13C (–25.2 to –19.6) and δ15N (10.9 to 17.5) values among crab instars reflects an increased diversity of diet as crabs develop. The association between C.