Zootaxa, Chrysaora Lactea Eschscholtz (Cnidaria)

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, Chrysaora Lactea Eschscholtz (Cnidaria) Zootaxa 1135: 29–48 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1135 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Redescription of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa) from the Brazilian coast, with designation of a neotype ANDRÉ C. MORANDINI1*, FÁBIO L. DA SILVEIRA1 & PAUL F.S. CORNELIUS2 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n.101, Cidade Universitária, 05508-900, São Paulo, SP, BRAZIL 2 51, Green Court Road, Crockenhill, Swanley Kent, BR8 8HF, U.K. E-mails: [email protected], [email protected], [email protected] *Corresponding author Abstract A redescription of the species Chrysaora lactea from the western South Atlantic is given based on live and preserved specimens from the Brazilian, Uruguayan and Argentinean coasts, and a neotype specimen is designated. The species is one of the commonest scyphomedusae in Brazilian coastal waters, reaching up to 25 cm in bell diameter with several different colour patterns (mainly milky- white). The species is recorded with certainty from Jamaica to the northern coast of Argentina, and can be distinguished from its congeners primarily by the order of the development of tentacles (2nd, 3rd, 1st, 3rd, 2nd). Key words: Discomedusae, Semaeostomeae, Pelagiidae, taxonomy, systematics, jellyfish, scyphomedusae, South Atlantic Introduction The scyphomedusa Chrysaora lactea Eschscholtz, 1829 is one of the commonest and most widely distributed scyphozoans on the Brazilian coast, but little information exists on its biology. The life cycle of the species was only recently described from scyphistomae obtained in the laboratory following the mixing of mature medusae (Morandini et al., 2004). The species has sometimes been misidentified as one or another of its congeners Chrysaora hysoscella (Linnaeus, 1767) and Chrysaora quinquecirrha (Desor, 1848) along the western South Atlantic (Goy, 1979). In the South Atlantic Ocean, the three Chrysaora species quoted above were mentioned in a recent identification and distribution paper and Accepted by D. Calder: 13 Dec. 2005; published: 27 Feb. 2006 29.
Recommended publications
  • Title the SYSTEMATIC POSITION of the STAUROMEDUSAE Author(S
    THE SYSTEMATIC POSITION OF THE Title STAUROMEDUSAE Author(s) Uchida, Tohru PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1973), 20: 133-139 Issue Date 1973-12-19 URL http://hdl.handle.net/2433/175784 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University THE SYSTEMATIC POSITION OF THE STAUROMEDUSAE ToHRU UCHIDA Biological Laboratory, Imperial Household, Tokyo With 2 Text-figures The Stauromedusae have hitherto been referred together with the Cubomedusae to the subclass Scyphostomidae in the Scyphomedusae. Recently, however, the life cycle of the cubomedusa, Tripedalia cystophora became clear by WERNER, CuTRESS and STUDEBACKER (1971) and it was established that the Cubomedusae only stand in a quite separate position from other orders of Scyphomedusae. On the other hand, WERNER who published several papers on the Scyphozoan polyp, Stephanoscyphus (1966-1971) laid stress on the fact that Stephanoscyphus can be linked directly with the extinct fossil group of the Conulata and concluded that the Coronatae represent the most basic group of all living Scyphomedusae with the exception of Cubomedusae. Such being the case, the systematic position of the Stauromedusae remains proble­ matical. The present writer is of the opinion that the Stauromedusae are to be entitled to the Ephyridae and are closely related to the Discomedusae, though there occurs no strobilation in the order. The body of Stauromedusae is composed of two parts; the upper octomerous medusan part and the lower tetramerous scyphistoma portion. No strobilation and no ephyra. Throughout their life history, they lack pelagic life entirely; an egg develops to the solid blastula, which becomes to the planula.
    [Show full text]
  • Cnidaria: Cubozoa and Scyphozoa) from the Coast of Rio Grande Do Norte State, Northeast of Brazil
    Check List 5(1): 133–138, 2009. ISSN: 1809-127X LISTS OF SPECIES Neritic Jellyfishes (Cnidaria: Cubozoa and Scyphozoa) from the coast of Rio Grande do Norte state, northeast of Brazil Marcelo de Oliveira Soares 1, 4 André Carrara Morandini 2 Helena Matthews-Cascon 3 1 Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Departamento de Paleontologia e Estratigrafia. CEP 91509-900. Porto Alegre, Rio Grande do Sul, Brazil. E-mail: [email protected] 2 Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé. Caixa Postal 119331. CEP 27910-970. Macaé, Rio de Janeiro, Brazil. 3 Universidade Federal do Ceará, Departamento de Biologia. CEP 60451-970. Fortaleza, Ceará, Brazil. 4. Universidade Federal do Piauí, Centro de Ciências da Natureza, Departamento de Ciências Naturais e Arqueologia. CEP 64049-550. Teresina, Piauí, Brazil. Abstract For the entire Brazilian coast, there are 22 published records of scyphozoans. On the other hand, only 35 species of cubozoans were described worldwide, four of them reported for the Brazilian coast. However, little is known about the species of cubozoans and scyphozoans in the Northeastern states of Brazil. The aim of this study was to perform a survey of the jellyfish (Cnidaria: Cubozoa and Scyphozoa) on the coast of Rio Grande do Norte state, Northeast of Brazil. Specimens were collected using trawl net on beaches in the counties of Natal (in 2003) and Tibaú (in 2004). For the Rio Grande do Norte coast there were few records of large jellyfish, and new records of the following cubozoan and scyphozoan species were verified: Chiropsalmus quadrumanus; Chrysaora lactea; Lychnorhiza lucerna and Stomolophus meleagris.
    [Show full text]
  • The Lesser-Known Medusa Drymonema Dalmatinum Haeckel 1880 (Scyphozoa, Discomedusae) in the Adriatic Sea
    ANNALES · Ser. hist. nat. · 24 · 2014 · 2 Original scientifi c article UDK 593.73:591.9(262.3) Received: 2014-10-20 THE LESSER-KNOWN MEDUSA DRYMONEMA DALMATINUM HAECKEL 1880 (SCYPHOZOA, DISCOMEDUSAE) IN THE ADRIATIC SEA Alenka MALEJ & Martin VODOPIVEC Marine Biology Station, National Institute of Biology, SI-6330 Piran, Fornače 41, Slovenia E-mail: [email protected] Davor LUČIĆ & Ivona ONOFRI Institute for Marine and Coastal Research, University of Dubrovnik, POB 83, HR-20000 Dubrovnik, Croatia Branka PESTORIĆ Institute for Marine Biology, University of Montenegro, POB 69, ME-85330 Kotor, Montenegro ABSTRACT Authors report historical and recent records of the little-known medusa Drymonema dalmatinum in the Adriatic Sea. This large scyphomedusa, which may develop a bell diameter of more than 1 m, was fi rst described in 1880 by Haeckel based on four specimens collected near the Dalmatian island Hvar. The paucity of this species records since its description confi rms its rarity, however, in the last 15 years sightings of D. dalmatinum have been more frequent. Key words: scyphomedusa, Drymonema dalmatinum, historical occurrence, recent observations, Mediterranean Sea LA POCO NOTA MEDUSA DRYMONEMA DALMATINUM HAECKEL 1880 (SCYPHOZOA, DISCOMEDUSAE) NEL MARE ADRIATICO SINTESI Gli autori riportano segnalazioni storiche e recenti della poco conosciuta medusa Drymonema dalmatinum nel mare Adriatico. Questa grande scifomedusa, che può sviluppare un cappello di diametro di oltre 1 m, è stata descrit- ta per la prima volta nel 1880 da Haeckel, in base a quattro esemplari catturati vicino all’isola di Lèsina (Hvar) in Dalmazia. La scarsità delle segnalazioni di questa specie dalla sua prima descrizione conferma la sua rarità.
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]
  • Dölling Und Galitz Verlag
    Press Release November 2019 Dölling und Galitz Verlag Abhandlungen des Naturwissen- schaftlichen Vereins in Hamburg, Edited by Gerhard Jarms and André C. Morandini Special Volume, English Edition in collaboration with Andreas Schmidt-Rhaesa, 816 pages, 1250 illustrations and Olav Giere and Ilka Straehler-Pohl distribution maps, Hardcover, 21 x 26,8 cm ISBN 978-3-86218-082-0, e 99,00 World Atlas of Jellyfish November 2019 Scypho medusae except Stauromedusae The »World Atlas of Jellyfish« presents in a lavishly illustrated multi-author compendium the more than 260 species of medusae (Scypho medusae and Cubomedusae) described so far. The general, first part deals with their structure, complex life cycles and rare fossil records. But it also details collection, cultivation and fish ery methods, even gives hints on photography and cooking recipes. Additionally, it covers the nature of medusae venoms, the effects and treatment of their stings. The second part offers con cise syste- matic descrip tions of all jellyfish species and their develop mental stages known so far. Numerous illustrations, distribution maps, taxonomic keys and literature lists allow for detailed identific ation and information. Outstanding among the wealth of wonderful illust- rations are hitherto unpub lished artistic colour paintings by Ernst Haeckel. The beauty of the animals is underlined by the elaborate typesetting of the book. This »Atlas« is a unique overview summa- The Editors are globally recognized resear- rizing our knowledge on the world’s jellyfish in all their facets. It chers on medusae. Gerhard Jarms was a is of importance not only to scientists worldwide, but also a source member of the Zoological Institute at the of fascination for divers and lovers of marine life.
    [Show full text]
  • New Record of Nausithoe Werneri (Scyphozoa, Coronatae
    ZooKeys 984: 1–21 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.984.56380 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research New record of Nausithoe werneri (Scyphozoa, Coronatae, Nausithoidae) from the Brazilian coast and a new synonymy for Nausithoe maculata Clarissa Garbi Molinari1, Maximiliano Manuel Maronna1, André Carrara Morandini1,2 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n. 101, Cidade Universitária, São Paulo, SP, 05508-090, Brazil 2 Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manuel Hypólito do Rego km 131.5, São Sebastião, SP, 11600-000, Brazil Corresponding author: Clarissa G. Molinari ([email protected]) Academic editor: B.W. Hoeksema | Received 10 July 2020 | Accepted 20 September 2020 | Published 4 November 2020 http://zoobank.org/22EB0B21-7A27-43FB-B902-58061BA59B73 Citation: Molinari CG, Maronna MM, Morandini AC (2020) New record of Nausithoe werneri (Scyphozoa, Coronatae, Nausithoidae) from the Brazilian coast and a new synonymy for Nausithoe maculata. ZooKeys 984: 1–21. https://doi.org/10.3897/zookeys.984.56380 Abstract The order Coronatae (Scyphozoa) includes six families, of which Nausithoidae Haeckel, 1880 is the most diverse with 26 species. Along the Brazilian coast, three species of the genus Nausithoe Kölliker, 1853 have been recorded: Nausithoe atlantica Broch, 1914, Nausithoe punctata Kölliker, 1853, and Nausithoe aurea Silveira & Morandini, 1997. Living polyps (n = 9) of an unidentified nausithoid were collected in September 2002 off Arraial do Cabo (Rio de Janeiro, southeastern Brazil) at a depth of 227 m, and have been kept in culture since then.
    [Show full text]
  • The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................
    [Show full text]
  • There Are Three Species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela Upwelling Ecosystem, Not Two
    Zootaxa 4778 (3): 401–438 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4778.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:01B9C95E-4CFE-4364-850B-3D994B4F2CCA There are three species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela upwelling ecosystem, not two V. RAS1,2*, S. NEETHLING1,3, A. ENGELBRECHT1,4, A.C. MORANDINI5, K.M. BAYHA6, H. SKRYPZECK1,7 & M.J. GIBBONS1,8 1Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. 2 [email protected]; https://orcid.org/0000-0003-3938-7241 3 [email protected]; https://orcid.org/0000-0001-5960-9361 4 [email protected]; https://orcid.org/0000-0001-8846-4069 5Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão trav. 14, n. 101, São Paulo, SP, 05508- 090, BRAZIL. [email protected]; https://orcid.org/0000-0003-3747-8748 6Noblis ESI, 112 Industrial Park Boulevard, Warner Robins, United States, GA 31088. [email protected]; https://orcid.org/0000-0003-1962-6452 7National Marine and Information Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, P.O.Box 912, Swakop- mund, Namibia. [email protected]; https://orcid.org/0000-0002-8463-5112 8 [email protected]; http://orcid.org/0000-0002-8320-8151 *Corresponding author Abstract Chrysaora (Pèron & Lesueur 1810) is the most diverse genus within Discomedusae, and 15 valid species are currently recognised, with many others not formally described.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Convergent evolution of eyes with divergent gene expression in jellyfish Permalink https://escholarship.org/uc/item/3gf789cz Author Picciani de Souza, Natasha Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Convergent evolution of eyes with divergent gene expression in jellyfish A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Natasha Picciani de Souza Committee in charge: Professor Todd H. Oakley, Chair Professor Celina E. Juliano, University of California Davis Professor Stephen R. Proulx December 2020 The dissertation of Natasha Picciani de Souza is approved. _____________________________________________ Prof. Stephen R. Proulx _____________________________________________ Prof. Celina E. Juliano, University of California Davis _____________________________________________ Prof. Todd H. Oakley, Committee Chair November 2020 Convergent evolution of eyes with divergent gene expression in jellyfish Copyright © 2020 by Natasha Picciani de Souza iii Acknowlegments I am sincerely grateful to Professor Todd Oakley for giving me the chance to pursue graduate school in one of the very best schools in the United States, for his patience and encouragement over all these years, for his immense support and, more than anything, for his empathy and trust during times of struggle. I am also very thankful to Professors Celina Juliano and Stephen Proulx for their very thoughtful suggestions that guided much of my research. To all my friends in the Oakley Lab, past and present, I am thankful for years of friendship, collegial support, coffee breaks, fun trips, memes, and scientific insights that significantly contributed to the work that I did.
    [Show full text]
  • Jellyfish Impact on Aquatic Ecosystems
    Jellyfish impact on aquatic ecosystems: warning for the development of mass occurrences early detection tools Tomás Ferreira Costa Rodrigues Mestrado em Biologia e Gestão da Qualidade da Água Departamento de Biologia 2019 Orientador Prof. Dr. Agostinho Antunes, Faculdade de Ciências da Universidade do Porto Coorientador Dr. Daniela Almeida, CIIMAR, Universidade do Porto Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP i Jellyfish impact on aquatic ecosystems: warning for the development of mass occurrences early detection tools À minha avó que me ensinou que para alcançar algo é necessário muito trabalho e sacrifício. FCUP ii Jellyfish impact on aquatic ecosystems: warning for the development of mass occurrences early detection tools Acknowledgments Firstly, I would like to thank my supervisor, Professor Agostinho Antunes, for accepting me into his group and for his support and advice during this journey. My most sincere thanks to my co-supervisor, Dr. Daniela Almeida, for teaching, helping and guiding me in all the steps, for proposing me all the challenges and for making me realize that work pays off. This project was funded in part by the Strategic Funding UID/Multi/04423/2019 through National Funds provided by Fundação para a Ciência e a Tecnologia (FCT)/MCTES and the ERDF in the framework of the program PT2020, by the European Structural and Investment Funds (ESIF) through the Competitiveness and Internationalization Operational Program–COMPETE 2020 and by National Funds through the FCT under the project PTDC/MAR-BIO/0440/2014 “Towards an integrated approach to enhance predictive accuracy of jellyfish impact on coastal marine ecosystems”.
    [Show full text]
  • Medusae (Scyphozoa and Cubozoa) from Southwestern Atlantic And
    Lat. Am. J. Aquat. Res., 46(2): 240-257, 2018 Scyphozoa and Cubozoa from southwestern Atlantic 240 1 DOI: 10.3856/vol46-issue2-fulltext-1 Review Medusae (Scyphozoa and Cubozoa) from southwestern Atlantic and Subantarctic region (32-60°S, 34-70°W): species composition, spatial distribution and life history traits Agustín Schiariti1,2, M. Sofía Dutto3, Daiana Y. Pereyra1 Gabriela Failla Siquier4 & André C. Morandini5 1Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina 2Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET Universidad Nacional de Mar del Plata, Argentina 3Instituto Argentino de Oceanografía (IADO), Área Oceanografía Biológica, Bahía Blanca, Argentina 4Laboratorio de Zoología de Invertebrados, Departamento de Biología Animal Facultad de Ciencias Universidad de la República, Montevideo, Uruguay 5Departamento de Zoología, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil Corresponding author: Agustin Schiariti ([email protected]) ABSTRACT. In this study, we reported the species composition and spatial distribution of Scyphomedusae and Cubomedusae from the southwestern Atlantic and Subantarctic region and reviewed the available knowledge of life history traits of these species. We gathered the literature records and presented new information collected from oceanographic and fishery surveys carried out between 1981 and 2017, encompassing an area of approximately 6,7 million km2 (32-60°S, 34-70°W). We confirmed the occurrence of 15 scyphozoans and 1 cubozoan species previously reported in the region. Lychnorhiza lucerna and Chrysaora lactea were the most numerous species, reaching the highest abundances/biomasses during summer/autumn period. Desmonema gaudichaudi, Chrysaora plocamia, and Periphylla periphylla were frequently observed in low abundances, reaching high numbers only occasionally.
    [Show full text]