Biology, Ecology and Ecophysiology of the Box Jellyfish Biology, Ecology and Ecophysiology of the Box Jellyfishcarybdea Marsupialis (Cnidaria: Cubozoa)

Total Page:16

File Type:pdf, Size:1020Kb

Biology, Ecology and Ecophysiology of the Box Jellyfish Biology, Ecology and Ecophysiology of the Box Jellyfishcarybdea Marsupialis (Cnidaria: Cubozoa) Biology, ecology and ecophysiology of the box M. J. ACEVEDO jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) Carybdea marsupialis MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellyfish Biology, ecology and ecophysiology of the box jellyfishCarybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecofisiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been financed by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modification of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its infinite growth) are in conflict with natural principles (ecology, with the finiteness of natural systems) […] Jellyfish are just a symptom of this situation, another warning that Nature is giving us!” Ferdinando Boero (FAO Report 2013) Thesis contents Summary / Resumen ...........................................................................................................................1 General introduction ............................................................................................................................3 Objectives and thesis outline ..............................................................................................................13 Chapter 1 Revision of the genus Carybdea (Cnidaria: Cubozoa: Carybdeidae): the identity of its type species Carybdea marsupialis ............................................................................... 15 Chapter 2 Maintenance, feeding and growth of Carybdea marsupialis (Cnidaria: Cubozoa) in the laboratory .................................................................................................................................51 Chapter 3 Trophic ecology and potential predation impact of Carybdea marsupialis (Cnidaria: Cubozoa) in the NW Mediterranean ................................................................................67 Chapter 4 Influence of human impacts on and forecasting of the occurrence of the box jellyfish Carybdea marsupialis in the Mediterranean coasts ......................................................89 General discussion............................................................................................................................115 Conclusions ......................................................................................................................................125 Acknowledgements / Agradecimientos ...........................................................................................127 1 Summary / Resumen Over the last years, the sightings of the cubomedusa Carybdea marsupialis have increased in the Mediterranean Sea and this has been linked to an increase in its abundance. Consequently, this phD thesis addresses some questions regarding the possible causes and effects of this phenomenon. Firstly, the taxonomy and distribution of the species have been revised and updated. Moreover, laboratory experiments were conducted to study the development and ecophysiology of this animal. These results were complemented with field studies on the gut contents and trophic markers ofC. marsupialis. Finally, the results of a four years monitoring in the coast of Denia (Spain), as well as the sightings of the species reported along the Mediterranean, provided solid evidence on the main factors affecting the distribution of C. marsupialis. Overall, the species seems to be favoured by high nutrient inputs from anthropogenic origin, and other human activities as coastal constructions. Los avistamientos de la cubomedusa Carybdea marsupialis han aumentado en el Mar Mediterráneo en los últimos años, hecho que ha sido atribuido a un incremento en su abundancia. El objetivo de esta tesis doctoral es responder algunas preguntas relacionadas con las posibles causas y efectos de este fenómeno. En primer lugar, se han actualizado la taxonomía y la distribución de la especie. Además, se han llevado a cabo experimentos relacionados con su desarrollo y ecofisiología. Estos resultados se han complementado con estudios de sus contenidos estomacales y marcadores tróficos en el campo. Finalmente, un monitoreo durante cuatro años en la costa de Denia (España), junto con los avistamientos de esta cubomedusa en el Mediterráneo, han proporcionado evidencias sólidas acerca de los factores principales que afectan la distribución de C. marsupialis. En general, la especie parece verse favorecida por el aporte de nutrientes de origen antropogénico, y por otras actividades humanas como las construcciones costeras. 3 General introduction Cubozoans, or box jellyfish, have received considerable attention from scientists and authorities from coastal areas because several species of this group represent a serious threat for human health. Numerous fatalities in tropical and subtropical coastal regions have been attributed to box jellyfish, also called cubomedusae or sea wasps (Bentlage et al. 2009; Keesing et al. 2016). The most venomous species are found in Australia, where they can cause important socio-economic losses (Bailey et al. 2004). Box jellyfish have been considered inconspicuous animals in the Mediterranean. However, in July 2008 a cubomedusae population outbreak was detected in Denia (NW Mediterranean, Spain), reaching unusual very high densities in some turistic beaches (Bordehore et al. 2011). The region is a popular turistic area, specially during the summer months, and several beach users were affected due to the presence of these organisms in the coast. That year, the Red Cross emergency services recorded more than 3,330 jellyfish stings along 17 km of coastline (Bordehore et al. 2011). This event had a significant impact on the media, wich highlighted “the detection of a new exotic species in the Mediterranean” identified as the cubomedusae Carybdea marsupialis (Van den Berg 2010). The sting of this species has been described to be painful but non fatal to humans, producing dermatitis (Peca et al. 1997). However, a sting case that resulted in cutaneous and systemic manifestations have been recently reported (Bordehore et al. 2015a). This escenario triggered the adoption of a monitoring strategy in order to develop management recommendations (Bordehore et al. 2011). Consequently, the LIFE CUBOMED project (www.cubomed.eu), comprising this and other PhD thesis (Bordehore 2014; Canepa 2014), started in 2010 with that purpose. The first necessary step was the correct identification of the species and the determination of its natural range of distribution. A significant progress in the taxonomy of cubozoans has taken place in the recent years (Gershwin 2005, Bentlage et al. 2010), thus we started our investigations from that point in order to properly determine the origin of the cubozoan species present in the Mediterranean. Afterwards, we proceed with the compilation and clarification of some basic and lacking information about the biology and ecology of the species in order to elucidate the possible drivers of the blooming episodes. Cubozoan life cycle As other cnidarians, cubozoans are characterized by alternation of benthic polyp and free- swimming medusa generations. The investigations in this thesis are focused on the cubomedusa stage; polyps have been observed in the wild only once for a carybdeid species (Studebaker 1972). We unsuccessfully searched for the polyps of C. marsupialis in the sea during the samplings conducted in the framework of the LIFE CUBOMED project. Moreover, during the PhD I have carried out several trials to rear a culture of C. marsupialis polyps in the laboratory; I managed to obtain the planulae 4 Introduction Fig. 1 Life cycle of Carybdea. (1) Male and female mating; (2) release of the fertilized egg into de water column; (3) settlement of planula larva on substrate after aprox. 2 days; (4) benthic polyp phase; (5) new polyps budding from existing polyps; (6) polyp metamorphosing into juvenile medusa; (7) release of juvenile cubomedusa. Drawing adapted from Studebaker (1972), University of Puerto Rico. Source: Bordehore et al. 2015b. larvae and the primary creeping polyps, but unfortunately the polyps did not survive. Hence, the knowledge for this life stage is still limited. Although the life cycle has not been completely clarified forC. marsupialis in the Mediterranean, similarities with another Carybdea sp. (= C. xaymacana, formerly considered as C. marsupialis, as demonstrated in Chapter 1 in this thesis) from Puerto Rico (Fig. 1) have been theorized (Studebaker 1972; Bordehore et al. 2015b). Fig. 2 Gonads of Carybdea marsupialis: (A) female gonads cross-section, scale bar = 10 μm; (B) male go- nads cross-section, scale bar = 50 μm. Pictures: Jimena García (USP). Introduction 5 Cubomedusae
Recommended publications
  • Are We Using the Correct First Aid for Jellyfish?
    Editorial Are we using the correct first aid for jellyfish? Jamie E Seymour The answer is predicated on our knowing what the correct treatment is — and we don’t n this issue of the MJA, Isbister and colleagues report that hot water immersion was no more effective than ice packs for I fi Chironex treating the pain of stings by the box jelly sh ( fleckeri).1 This finding is surprising, as jellyfish venoms are heat- labile,2 but unsurprising, given that heat treatment for some patients did not begin until 4 hours after the patient was stung. Managing jellyfish stings is generally subject to confusion, and official advice needs revising to make it clear, consistent and effec- tive. The current Australian Resuscitation Council (ARC) guidelines for treating jellyfish envenoming3 encourage this confusion by suggesting that people stung while swimming in temperate waters (south of Bundaberg) should use heat immersion to reduce pain report.10 Despite many subsequent published studies finding this (based on a randomised controlled trial of treatment for bluebottle procedure ineffective, including one randomised controlled trial,11 stings4), but those envenomed in tropical waters (north of Bunda- it is still standard practice for many medical professionals. berg) should be treated with ice. The guidelines also advise that Magnesium may be helpful in some situations, but may not be as vinegar should be used to minimise envenoming only in tropical effective as first thought, perhaps because of differences in the areas — unless it is clear that the patient has been stung by a blue- venoms involved. bottle, in which case vinegar should never be used.
    [Show full text]
  • Comparative Internal Anatomy of Staurozoa (Cnidaria), with Functional and Evolutionary Inferences
    Comparative internal anatomy of Staurozoa (Cnidaria), with functional and evolutionary inferences Lucı´lia S. Miranda1, Allen G. Collins2, Yayoi M. Hirano3, Claudia E. Mills4 and Antonio C. Marques1,5 1 Department of Zoology, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil 2 National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America 3 Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba, Japan 4 Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, Washington, United States of America 5 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil ABSTRACT Comparative efforts to understand the body plan evolution of stalked jellyfishes are scarce. Most characters, and particularly internal anatomy, have neither been explored for the class Staurozoa, nor broadly applied in its taxonomy and classification. Recently, a molecular phylogenetic hypothesis was derived for Staurozoa, allowing for the first broad histological comparative study of staurozoan taxa. This study uses comparative histology to describe the body plans of nine staurozoan species, inferring functional and evolutionary aspects of internal morphology based on the current phylogeny of Staurozoa. We document rarely- studied structures, such as ostia between radial pockets, intertentacular lobules, gametoducts, pad-like adhesive structures, and white spots of nematocysts (the last four newly proposed putative synapomorphies for Staurozoa). Two different regions of nematogenesis are documented. This work falsifies the view that the peduncle region of stauromedusae only retains polypoid characters; metamorphosis from stauropolyp to stauromedusa occurs both at the apical region (calyx) and basal 18 June 2016 Submitted region (peduncle).
    [Show full text]
  • Anatomia Associada Ao Comportamento Reprodutivo De
    Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa São Paulo 2015 Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo para obtenção de Título de Mestre em Ciências, na Área de Zoologia Orientador: Prof. Dr. Antonio Carlos Marques São Paulo 2015 García Rodríguez, Jimena Anatomia associada ao comportamento reprodutivo de Cubozoa 96 páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Cubozoa; 2. Histologia; 3. Reprodução. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques A mis padres, hermana y en especial a mi abuelita “Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. Al andar se hace el camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar. Caminante no hay camino sino estelas en la mar” Antonio Machado, 1912 Agradecimentos Em primeiro lugar, eu gostaria de agradecer ao meu orientador Antonio Carlos Marques, Tim, pela confiança desde o primeiro dia, pela ajuda tanto pessoal como profissional durante os dois anos de mestrado, pelas discussões de cada tema tratado e estudado e pelas orientações que tornaram possível a elaboração deste trabalho. Agradeço também o apoio institucional do Instituto de Biociências e do Centro de Biologia Marinha da Universidade de São Paulo.
    [Show full text]
  • Two New Species of Box Jellies (Cnidaria: Cubozoa: Carybdeida)
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 29 010–019 (2014) DOI: 10.18195/issn.0312-3162.29(1).2014.010-019 Two new species of box jellies (Cnidaria: Cubozoa: Carybdeida) from the central coast of Western Australia, both presumed to cause Irukandji syndrome Lisa-Ann Gershwin CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7000, Australia. Email: [email protected] ABSTRACT – Irukandji jellies are of increasing interest as their stings are becoming more frequently reported around the world. Previously only two species were known from Western Australia, namely Carukia shinju Gershwin, 2005 and Malo maxima Gershwin, 2005, both from Broome. Two new species believed to cause Irukandji syndrome have recently been found and are described herein. One, Malo bella sp. nov., is from the Ningaloo Reef and Dampier Archipelago regions. It differs from its congeners in its small size at maturity, its statolith shape, irregular warts on the perradial lappets, and a unique combination of other traits outlined herein. This species is not associated with any particular stings, but its phylogenetic affi nity would suggest that it may be highly toxic. The second species, Keesingia gigas gen. et sp. nov., is from the Shark Bay and Ningaloo Reef regions. This enormous species is unique in possessing key characters of three families, including crescentic phacellae and broadly winged pedalia (Alatinidae) and deeply incised rhopalial niches and feathery diverticulations on the velarial canals (Carukiidae and Tamoyidae). These two new species bring the total species known or believed to cause Irukandji syndrome to at least 16. Research into the biology and ecology of these species should be considered a high priority, in order to manage their potential impacts on public safety.
    [Show full text]
  • Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
    diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J.
    [Show full text]
  • Marine Turtle Newsletter No. 117, 2007 - Page  ISSN 0839-7708 Editors: Managing Editor
    Issue Number 117 July 2007 Logo for the Twenty-Eighth Symposium on Sea Turtle Biology and Conservation (pp. 14-16). IN THIS ISSUE: Articles: Marine Turtles in Mozambique: Towards an Effective Conservation and Management Program..................A.Costa et al. Predation on the Zoanthid Palythoa caribaeorum by a Hawksbill Turtle in Southeastern Brazil.......S.N.Stampar et al. Rat Eradication as Part of a Hawksbill Conservation Program in Paraíba State, Brazil........................D.Zeppelini et al. Morphodynamics of an Olive Ridley Nesting Beach in the Baja Peninsula...V.M. Gómez-Muñoz & L. Godínez-Orta Notes: First Records of Olive Ridley Turtles in Seychelles...............................................................S. Remie & J.A. Mortimer Sexual Harassment By A Male Green Turtle..................................................................................................B.W. Bowen Incidental Capture of a Leatherback Along the Coast of Ceara, Brazil............................................E.H.S.M. Lima et al. Book Review IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 117, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J. Godley & Annette C.
    [Show full text]
  • Ecosystems Mario V
    Ecosystems Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, Cristina Branquinho, Jean-Claude Dutay, Monia El Bour, Frédéric Médail, Meryem Mojtahid, et al. To cite this version: Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, et al.. Ecosystems. Cramer W, Guiot J, Marini K. Climate and Environmental Change in the Mediterranean Basin -Current Situation and Risks for the Future, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp.323-468, 2021, ISBN: 978-2-9577416-0-1. hal-03210122 HAL Id: hal-03210122 https://hal-amu.archives-ouvertes.fr/hal-03210122 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Chapter 4 Ecosystems Coordinating Lead Authors: Mario V. Balzan (Malta), Abed El Rahman Hassoun (Lebanon) Lead Authors: Najet Aroua (Algeria), Virginie Baldy (France), Magda Bou Dagher (Lebanon), Cristina Branquinho (Portugal), Jean-Claude Dutay (France), Monia El Bour (Tunisia), Frédéric Médail (France), Meryem Mojtahid (Morocco/France), Alejandra Morán-Ordóñez (Spain), Pier Paolo Roggero (Italy), Sergio Rossi Heras (Italy), Bertrand Schatz (France), Ioannis N.
    [Show full text]
  • Cubozoan Genome Illuminates Functional Diversification Of
    www.nature.com/scientificreports OPEN Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution Received: 10 February 2015 1,* 1,* 1 1 Accepted: 05 June 2015 Michaela Liegertová , Jiří Pergner , Iryna Kozmiková , Peter Fabian , 2 3 3 3 2 Published: 08 July 2015 Antonio R. Pombinho , Hynek Strnad , Jan Pačes , Čestmír Vlček , Petr Bartůněk & Zbyněk Kozmik1 Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
    [Show full text]
  • Etiology of Irukandji Syndrome with Particular Focus on the Venom Ecology and Life History of One Medically Significant Carybdeid Box Jellyfish Alatina Moseri
    ResearchOnline@JCU This file is part of the following reference: Carrette, Teresa Jo (2014) Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40748/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40748/ Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri Thesis submitted by Teresa Jo Carrette BSc MSc December 2014 For the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the College of Marine and Environmental Sciences James Cook University Dedication: “The sea, once it casts its spell, holds one in its net of wonder forever.” Jacques Yves Cousteau To my family – and my ocean home ii Acknowledgements Firstly, I have to acknowledge my primary supervisor Associate Professor Jamie Seymour. We have spent the last 17 years in a variable state of fatigue, blind enthusiasm, inspiration, reluctance, pain-killer driven delusion, hope and misery. I have you to blame/thank for it all. Just when I think all hope is lost and am about to throw it all in you seem to step in with the words of wisdom that I need.
    [Show full text]
  • AUSTRALIAN PRODUCT INFORMATION – BOX JELLYFISH ANTIVENOM Solution for Injection
    BOX JELLYFISH ANTIVENOM (AUST R 74891) Product Information AUSTRALIAN PRODUCT INFORMATION – BOX JELLYFISH ANTIVENOM Solution for Injection 1 NAME OF THE MEDICINE Box jellyfish antivenom (ovine) as active ingredient. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION BOX JELLYFISH ANTIVENOM is prepared from the plasma of sheep immunised with the venom of the box jellyfish (Chironex fleckeri). Each vial contains 20,000 units of antivenom. The product also contains phenol 2.2 mg, sodium chloride 8 mg, water for injections to 1 mL in an aqueous solution. Each vial contains ≤ 100 mg per mL of plasma protein of ovine origin. The product volume is potency dependant thus it varies from batch to batch. Please refer to the product volume printed on the carton. 3 PHARMACEUTICAL FORM BOX JELLYFISH ANTIVENOM is a solution for injection (20000U). It is a clear to opalescent, straw coloured, viscous solution in a clear glass vial. 4 CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS For the treatment of patients who exhibit manifestations of systemic envenoming or who have extensive local involvement causing extreme pain which does not respond to routine analgesic therapy. 4.2 DOSE AND METHOD OF ADMINISTRATION Not everyone who is stung by a box jellyfish needs antivenom. In cases of severe systemic envenoming, cardiopulmonary resuscitation and other appropriate first aid measures recommended by local guidelines must be instituted when necessary before giving antivenom. Antivenom should be administered as soon as possible after resuscitation has commenced. Ideally this will be in an intensive care facility. The contents of one vial (20,000 units) should be administered slowly by intravenous infusion after dilution with an intravenous solution such as Hartmann’s solution or 0.9% w/v Sodium Chloride.
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Seasonality, Interannual Variation and Distribution of Carybdea Marsupialis (Cnidaria: Cubozoa) in the Mediterranean Coast: Influence of Human Impacts
    5th International Jellyfish Bloom Symposium Barcelona May 30 - June 3, 2016 Seasonality, interannual variation and distribution of Carybdea marsupialis (Cnidaria: Cubozoa) in the Mediterranean coast: influence of human impacts JBS-07 / Oral Presentation_05 Melissa J. Acevedo1, Antonio Canepa2, César Bordehore3, Mar Bosch-Belmar4, Cristina Alonso3, Sabrina Zappu5, Elia Durà3, Alan Deidun6, Stefano Piraino4, Albert Calbet1, Verónica Fuentes1 1 Institut de Ciències del Mar, CSIC, Barcelona, Spain 2 Pontificia Universidad Católica de Valparaíso, Chile 3 Departamento de Ecología e Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” IMEM, Universidad de Alicante, Spain 4 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy 5 Department of Environmental Sciences and Territory, University of Sassari, Italy 6 IOI – Malta Operational Centre, University of Malta, Malta This study addresses the seasonal and interannual variability in box jellyfish abundance for a population of Carybdea marsupialis monitored along the coast of Denia (NW Mediterranean, Spain). Environmental data and cubomedusae density have been monthly recorded from March 2010 to December 2013. Environmental variables registered included water temperature, salinity, nutrients concentration (i.e. DIN, phosphate and silicon), chlorophyll concentration and zooplankton abundance and composition. Generalized Additive Models (GAM) have been fitted to understand the relationships of aforementioned environmental variables and C. marsupialis abundance. Salinity and chlorophyll concentration have been reported as the most important variables influencing C. marsupialis abundance, as well as N and P concentrations. Also, LUSI (Land Use Simplified Index) showed a positive correlation with the presence of this box jellyfish; this index reflects the impact of nutrient inputs along the coast.
    [Show full text]