New Developments in Stroke Rehabilitation Eugenio R

Total Page:16

File Type:pdf, Size:1020Kb

New Developments in Stroke Rehabilitation Eugenio R New Developments in Stroke Rehabilitation Eugenio R. Rocksmith, MD, and Michael J. Reding, MD Address ment of common stroke complications, such as depression, Burke Rehabilitation Hospital, 785 Mamaroneck Avenue, dysphagia, venous thromboembolic complications, incon- White Plains, NY 10605-2523, USA. tinence, and spasticity. This article examines these develop- E-mail: [email protected] ments and their effects on rehabilitation following stroke. Current Atherosclerosis Reports 2002, 4:277–284 Current Science Inc. ISSN 1523–3804 Copyright © 2002 by Current Science Inc. Advances in Stroke Epidemiology The American Heart Association has recently increased its There is increasing evidence that environmental and neuro- estimate of the number of new strokes in the United pharmacologic treatments enhance stroke recovery. Func- States population from 500,000 to 600,000 per year (105 tional magnetic resonance imaging and transcranial magnetic to 139 cases per 100,000 population). Their estimate of stimulation have significantly broadened our understanding of the number of stroke survivors in the United States has the neuroanatomic relationships involved in recovery from also been increased from 3 million to 4 million. [1] These brain injury due to stroke. These tools have also demon- changes are due to the fact that previous estimates were strated the role for pharmacologic enhancement of cortical based on populations from white, middle class Rochester, plasticity coupled with behavioral interventions. Robot- Minnesota and Framingham, Massachusetts. The poor are assisted therapy and partial body weight-supported treadmill less likely to seek medical attention, and blacks are 2.4 gait training have demonstrated the role for technologic times more likely to have a stroke than whites [2]. Stroke intervention in the modern neuro-rehabilitation setting. Cur- remains the most common debilitating neurologic disor- rent research using hemi-field ocular prisms and patching der of adults in the United States. It is the third leading techniques suggest a role in the rehabilitation of hemianopsia cause of mortality and is one of the leading causes of and visual neglect. Finally, many advances have been made in long-term, severe disability. The cost of acute care plus the understanding of common stroke complications, such as rehabilitation services is estimated to total $30 billion per depression, dysphagia, venous thromboembolic disease, year. Of all patients surviving 3 months after their stroke, incontinence, and spasticity. approximately half will be alive in 5 years, and a third will survive 10 years. Approximately 60% recover inde- pendence with self-care, and 75% recover the ability to Introduction walk independently. Approximately 19% will require There is increasing evidence that environmental and neu- chronic institutional care. [3] ropharmacologic treatments enhance stroke recovery. Func- tional magnetic resonance imaging (fMRI) has allowed us to study the role of ipsilateral and contralateral primary, Advances in Neuroimaging secondary, and tertiary motor control systems in the motor Within the past decade, the neuroscience community has recovery process. Magnetic coil stimulation has been used made tremendous strides in understanding the complex- to study primary and secondary motor cortex responsive- ities of the human brain. Positron emission tomography ness to stimulation before versus after passive manipula- (PET) imaging became available in the late 1980s. It tion of the paretic limb, or to drug versus placebo requires administration of a radioactive tracer, which is intervention. Behavioral interventions, such as forced use of used to measure regional cerebral glucose metabolism the paretic limb by constraining the normal hand and par- both at rest and while performing cognitive or behav- tial body weight-supported treadmill gait training of the ioral tasks. Comparisons of rest with activation images hemiplegic patient, have a solid experimental base and are provide information about the role of specific neuroana- becoming standard rehabilitation techniques for selected tomic structures in performance of the cognitive or patients. Use of hemi-field ocular prisms or patching tech- behavioral tasks. Its application in behavioral research is niques is being studied for their effects on treating visual limited by the short half-life of the radioactive tracers hemi-neglect following stroke. Important advances have used and by the total dosage of radiation that can be also been made in the prevention, recognition, and treat- safely administered. 278 Cardiovascular Disease and Stroke Functional MRI is a significant advance in neurobehav- retrieve food pellets with gross four-finger grasp, then with ioral research that became available in the mid 1990s. It does successively more precise finger movements. not require radiation exposure. fMRI is based upon the con- Several studies have shown efficacy of CI rehabilitation cept that increased neuronal activity is coupled to increased techniques of the upper extremity (UE) in selected patients local blood flow. For example, flexion and extension of the following stroke. Patients must have some residual volun- right elbow is associated with increased blood flow in the tary wrist and hand movement (20 degrees of wrist exten- region of the left primary motor cortex devoted to elbow sion and 10 degrees of finger extension). CI therapy control. With the use of fMRI, it has been shown that bilat- improvements have led to functional and lasting gains as eral motor cortices and their association areas are recruited in measured by improved performance of self-care activities learning a novel motor task. In addition, the greater the [8•,9–11]. amount of force generated, the larger the area of bilateral Brain imaging and TMS studies in stroke victims have activation. [4] As performance of the motor task is perfected shown that CI therapy causes use-dependent cortical reor- through repetition, the recruitment area becomes smaller ganization. This is evidenced by an increase in the area of and includes only contralateral primary motor cortex. cortex involved in the control of movement of the affected Functional MRI has also revealed that the same pattern UE [12]. In a study by Levy et al. [13], two subjects who of recruitment occurs initially in some patients who have had already undergone traditional therapy had a baseline sustained a stroke. As with learning a novel task, a patient fMRI performed that revealed minimal ipsilateral posterior with a subcortical stroke relearning how to grasp an object parietal activation. After 2 weeks of CI therapy for 6 hours with the paretic hand initially activates bilateral motor cor- per day, follow-up fMRI in one subject demonstrated acti- tices, posterior parietal regions, and prefrontal regions. As vation bordering the lesion, bilateral activation in associa- the ability to perform the task is refined, ipsilateral motor tion motor cortices, and ipsilateral activation in the cortex activity decreases and contralateral activity increases primary motor cortex. In the second subject, activation was [5••]. There is evidence that this neural plasticity can be demonstrated adjacent to the lesion site. Additionally, enhanced through various techniques used in the neurore- these increases in areas of activation correlated with habilitation setting. increased strength and performance time [13]. TMS has also been used to map the region of the primary motor cor- tex involved in controlling the affected arm movements in Modulation of Neural Plasticity hemiparetic patients. As the magnetic coil is applied to Constraint-induced (CI) therapy for motor recovery is specific regions of the motor strip, muscle activity is based on research in monkeys and demonstrates that deaf- detected in the affected hand via electromyelogram (EMG). ferentation of a limb results in either no movement or very After a trial of CI therapy, an enlargement of the cortical clumsy nonproductive movements. Through negative rein- region producing hand movements is noted, implying that forcement, the monkeys learn not to use the affected limb. cortical reorganization has occurred [14]. They develop compensatory strategies using their intact limb to achieve their goals. Forcing the animals to use their deafferented limb by restraining the intact upper extremity Robot-assisted Neurorehabilitation improves motor performance in the affected limb. CI ther- At the dawn of the 21st century, we have achieved a num- apy was first studied in stroke survivors in 1981 [6]. Within ber of technologic advances that have been applied to the past several years, fMRI and transcranial magnetic stim- stroke rehabilitation. Our multimedia environment pro- ulation (TMS) have enabled research neuroscientists to vides us with new techniques to increase patient motiva- visualize the changes that take place in the brain as a result tion and participation in their therapy programs. of CI therapy. The data support two effects of CI therapy: Technology may also be used to reduce the cost of in- cortical reorganization via use-dependent plasticity, and patient rehabilitation by more efficient use of therapist reversal of learned nonuse of the paretic limb. time and skills. Robot-aided sensorimotor training, a varia- Intracortical microstimulation studies of monkeys with tion of CI rehabilitation, can deliver a quantifiable amount a surgically induced ischemic infarct in a portion of the of patient therapy and can simultaneously
Recommended publications
  • Hitting a Wall: an Ambiguous Case of Wallenberg Syndrome
    Open Access Case Report DOI: 10.7759/cureus.16268 Hitting a Wall: An Ambiguous Case of Wallenberg Syndrome James R. Pellegrini 1 , Rezwan Munshi 1 , Bohao Cao 1 , Samuel Olson 2 , Vincent Cappello 1 1. Internal Medicine, Nassau University Medical Center, East Meadow, USA 2. Physical Medicine and Rehabilitation, Stony Brook University, Stony Brook, USA Corresponding author: Bohao Cao, [email protected] Abstract Wallenberg syndrome is the most common stroke of the posterior circulation. Diagnosis of Wallenberg syndrome is often overlooked as initial MRI may show no visible lesion. We present an atypical case of Wallenberg syndrome in which the initial MRI of the brain was normal. Our patient is a 65-year-old male who was brought in by emergency medical services complaining of right- sided facial droop, slurred speech, and left-sided weakness for one day. Physical examination showed decreased left arm and leg strength compared to the right side, decreased left facial temperature sensations, decreased left arm and leg temperature sensations, and difficulty sitting upright with an associated leaning towards the left side. An initial magnetic resonance imaging (MRI) of the brain with and without contrast revealed no abnormality. In light of such a high suspicion for stroke based on the patient’s neurologic deficits, a repeat MRI of the brain was performed three days later and exposed a small focus of bright signal (hyperintensity) on T2-weighted fluid-attenuated inversion recovery and diffusion-weighted imaging (DWI) in the left posterior medulla. Wallenberg syndrome, also known as lateral medullary syndrome or posterior inferior cerebellar artery syndrome, is a constellation of symptoms caused by posterior vascular accidents.
    [Show full text]
  • Acute Stroke Thrombolysis Guideline (Template) TIME IS BRAIN Call “Code Stroke” DOOR to NEEDLE TARGET IS Less Than 60 MINUTES!
    Acute Stroke Thrombolysis Guideline (Template) TIME IS BRAIN Call “Code Stroke” DOOR TO NEEDLE TARGET IS less than 60 MINUTES! Guideline: Use of IV Recombinant Tissue Plasminogen Activator (rtPA, tPA, Alteplase, Actilyse®) in Acute Ischaemic Stroke This treatment is indicated in selected acute stroke patients. See New Zealand Clinical Guidelines for Stroke Management 2010 www.nzgg.org.nz Purpose This stroke thrombolysis guideline is intended to guide clinicians when planning stroke thrombolysis with intravenous tissue plasminogen activator (Alteplase). [NB: this template has been developed by the NZ National Thrombolysis Working Group, requires local adaptation, and can be used as a guideline or converted into a pathway by adding tick boxes and patient sticker areas]. Thrombolysis should be considered in patients with acute stroke symptoms arriving within 3.5 hours (treat IV within 4.5 hrs) of symptom onset. Alteplase CANNOT be substituted with any other fibrinolytic agents, including other forms of recombinant tPA. Definitions “Code Stroke” is a key component of effective thrombolysis and denotes a rapid treatment pathway to minimise onset to needle time. It is a communication protocol to activate the appropriate Stroke Thrombolysis Team to meet the patient at the hospital door. This will utilise different resources in different hospitals. It also includes: 1. Avoidance of transit to non-thrombolysis hospitals 2. Pre-hospital notification that a potential stroke thrombolysis patient is en-route with an estimated time of arrival 3. Bloods and IV lines x 2 performed in transit if no delays would result, or otherwise at hospital triage 4. Pre-notification of CT staff of pending arrival 5.
    [Show full text]
  • Cognitive Behaviour Therapy (CBT) and Stroke Rehabilitation
    Cognitive Behaviour Therapy (CBT) and Stroke Rehabilitation Amy Quilty OT Reg. (Ont.), Occupational Therapist Cognitive Behavioural Therapy (CBT) Certificate Program, University of Toronto Quinte Health Care: [email protected] Learning Objectives • To understand that CBT: • has common ground with neuroscience • principles are consistent with stroke best practices • treats barriers to stroke recovery • is an opportunity to optimize stroke recovery Question? Why do humans dominate Earth? The power of THOUGHT • Adaptive • Functional behaviours • Health and well-being • Maladaptive • Dysfunctional behaviours • Emotional difficulties Emotional difficulties post-stroke • “PSD is a common sequelae of stroke. The occurrence of PSD has been reported as high as 30–60% of patients who have experienced a stroke within the first year after onset” Canadian Stroke Best Practice Recommendations: Mood, Cognition and Fatigue Following Stroke practice guidelines, update 2015 http://onlinelibrary.wiley.com/doi/10.1111/ijs.12557/full • Australian rates: (Kneeborne, 2015) • Depression ~31% • Anxiety ~18% - 25% • Post Traumatic Stress ~10% - 30% • Emotional difficulties post-stroke have a negative impact on rehabilitation outcomes. Emotional difficulties post-stroke: PSD • Post stroke depression (PSD) is associated with: • Increased utilization of hospital services • Reduced participation in rehabilitation • Maladaptive thoughts • Increased physical impairment • Increased mortality Negative thoughts & depression • Negative thought associated with depression has been linked to greater mortality at 12-24 months post-stroke Nursing Best Practice Guideline from RNAO Stroke Assessment Across the Continuum of Care June : http://rnao.ca/sites/rnao- ca/files/Stroke_with_merged_supplement_sticker_2012.pdf Cognitive Behavioral Therapy (CBT) https://www.youtube.com/watch?v=0ViaCs0k2jM Cognitive Behavioral Therapy - CBT A Framework to Support CBT for Emotional Disorder After Stroke* *Figure 2, Framework for CBT after stroke.
    [Show full text]
  • SWOSS Prevention Committee
    Hemiplegic Shoulder Power Point for staff education sessions Presented by Cathy McBay and Candace Coe HHS Stroke Annual Review March 7 and 7, 2018 www.swostroke.ca Overview • Structure of the Shoulder Complex • Low Tone Upper Limb • Hemi Arm protocol • High Tone Upper Limb • Hemiplegic Shoulder Pain Hemi Sling Application Structure GLENOHUMERAL JOINT • Ball and socket joint. • Stability sacrificed for mobility. MUSCULAR CONTROL • Rotator Cuff muscles • Scapular and trunk muscles Biomechanics: Arm Elevation • 0-90 degrees • Primarily arm (ie:humerus) movement • Little movement in shoulder blade (scapula) • Above 90 degrees • To allow normal movement and prevent impingement of rotator cuff tendons the shoulder blade MUST o Rotate up o Glide along rib cage Low Tone Shoulder • Most common in initial stages following stroke. • Results from damage to the motor pathways innervating the upper limb muscles. • Low tone shoulders are highly susceptible to damage of the structures surrounding the shoulder (muscles, tendons, ligaments). • Preventing subluxation is crucial in the early stages of stroke recovery- critical role for all team members Low Tone Shoulder • Pathoanatomy of Subluxed Shoulder • Flaccid or low tone muscles at shoulder and trunk lead to altered alignment of scapula and humerus. • Stabilizing muscles not present • Muscles overstretch due to weight of arm in dependent position. • Inferior subluxation is most common Shoulder Subluxation • Consequences of shoulder subluxation: • Irreversible stretching of ligaments, tendons and capsule leading to instability at the joint. • Structural changes hamper recovery of muscle activity in shoulder complex. • Injury to brachial plexus. • Chronic shoulder pain. Shoulder Subluxation Management of Low Tone Shoulder • Positioning • Support low tone arm at all times: o Use pillows, slings, lap trays o Slings should be worn during transfers or ambulation only.
    [Show full text]
  • Effect of Fluoxetine on Motor Recovery After Acute Haemorrhagic Stroke
    logy & N ro e u ur e o p N h f y o s l i a o l n o r g Shah et al., J Neurol Neurophysiol 2016, 7:2 u y o J Journal of Neurology & Neurophysiology DOI: 10.4172/2155-9562.1000364 ISSN: 2155-9562 Neurology & Neurophysiology Research Open Access Effect of Fluoxetine on Motor Recovery after Acute Haemorrhagic Stroke: A Randomized Trial Irfan Ahmad Shah1*, Ravouf P Asimi1, Yuman Kawoos2, Mushtaq A Wani1, Maqbool A Wani1 and Mansoor A Dar2 1Department of Neurology, Sheri-Kashmir Institute of Medical Sciences, Srinagar, India 2Department of Psychiatry, Government medical college Srinagar, India *Corresponding author: Irfan Ahmad Shah, Senior resident hostel, SKIMS, Soura, Srinagar, India, Tel: 91-9796957186; E-mail: [email protected] Received date: February 26, 2016; Accepted date: March 29, 2016; Published date: April 05, 2016 Copyright: © 2016 Shah IA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: A few clinical trials have suggested that selective serotonin reuptake inhibitors (SSRI’s) enhance motor recovery after stroke but no study has been done in haemorhagic stroke patients. We therefore aimed to investigate whether fluoxetine, an SSRI would enhance motor recovery in patients of haemorrrhagic stroke. Methods: Patients who had haemorrhagic stroke with hemiplegia or hemiparesis and were aged between 18 years and 80 years were included in this double-blind, placebo-controlled trial. Patients were randomly assigned, in a 1:1 ratio to fluoxetine (20 mg/d, orally) or placebo for 3 months starting 5-10 days after the onset of stroke.
    [Show full text]
  • Life-After-Stroke-Guide 7819.Pdf
    A GUIDE FOR PATIENTS AND CAREGIVERS LIFE AFTER STROKE Our Path Forward Encompass Health is a national sponsor of Together to End Stroke. TABLE OF CONTENTS 04 What is a stroke? 24 Rehabilitation setting options 06 About my stroke 25 Tips for choosing a rehabilitation facility 07 Diagnosis and early treatment 26 What to expect in rehabilitation 10 Common physical changes after a stroke 29 My rehabilitation goals 13 Common communication and cognitive changes 30 Preventing another after stroke stroke 18 Common emotional and 33 Signs and symptoms of personality changes after stroke stroke 34 Resources 22 Why rehabilitation is important INTRODUCTION THERE IS LIFE – AND HOPE – AFTER STROKE. WITH TIME, NEW ROUTINES WILL BECOME SECOND NATURE. REHABILITATION CAN BUILD YOUR STRENGTH, CAPABILITY AND CONFIDENCE. IT CAN HELP YOU CONTINUE YOUR DAILY ACTIVITIES DESPITE THE EFFECTS OF YOUR STROKE. If you are the caregiver, family member or friend of a stroke survivor, your role is vital. You should know the prevention plan and help your loved one to comply with the plan. With a committed health care team and a rehabilitation plan specific to their needs, most stroke survivors can prevent another stroke and thrive. We hope this guide will help you and your loved ones understand the effects of stroke and how to maximize your rehabilitation and recovery. 03 WHAT IS A STROKE? Stroke is an event that affects the arteries of the brain. A stroke occurs when a blood vessel bringing blood to the brain gets blocked or ruptures (bursts). This means that the area of the brain the blocked or ruptured blood vessel supplies can’t get the oxygen and nutrients it needs.
    [Show full text]
  • Post Stroke Depression
    Chapter 18: Post stroke depression Abstract A variety of psychological disorders may develop following stroke, namely depression. Post- stroke depression has been reported to affect approximately one-third of individuals. These rates may also be influenced by a combination of factors such as age, sex, socioeconomic status, functional independence, cognitive impairment, and stroke severity. The presence of post-stroke depression can significantly impact a wide range of outcomes and overall stroke recovery. Several studies have investigated pharmacological and non-pharmacological treatment options for post-stroke depression. However, no consensus has been reached regarding the most effective and viable treatment. This chapter explores the evidence regarding interventions for the prevention and treatment of post-stroke depression, as well as its prevalence, predictors, and consequences. Marcus Saikaley, BSc Jerome Iruthayarajah, MSc Amber Harnett, MSc Katherine Salter, PhD Norine Foley, MSc Swati Mehta, PhD Joshua Wiener, PhD Candidate Andreea Cotoi, MSc Robert Teasell, MD www.ebrsr.com 1 Chapter 18: Post-stroke depression Key Points .............................................................................................................................................. 4 Modified Sackett Scale ................................................................................................................... 6 New to the 19th edition of the Evidence-based Review of Stroke Rehabilitation ......................................................................................................................................
    [Show full text]
  • Poststroke Depression
    Clinical update • CLINICAL PRACTICE Poststroke depression Fary Khan, MBBS, FAFRM (RACP), is Lecturer, Rehabilitation Studies, Department of Medicine, University of Melbourne, neuro-rehabilitation physician, the Melbourne Extended Care and Rehabilitation Centre, the Royal Melbourne Hospital, and Head, Orthopaedic and Musculoskeletal Unit, Caufield General Medical Centre, Victoria. BACKGROUND Stroke is the leading cause of disability in PSD and functional recovery Poststroke depression (PSD) is common adults and is frequently associated with neu- and often unrecognised. The diagnosis ropsychiatric symptoms such as depressed Poststroke depression is associated with can be difficult due to deficits of stroke mood, generalised anxiety and apathy. The poor functional and psychosocial outcome.8 such as impaired self reporting and prevalence of poststroke depression (PSD) Although there is no long term data on the cognition, poor insight and dysphasia. varies from 25–79% due to the differences in direct effect of PSD on cost of care there are Untreated PSD can interfere with recovery various study diagnostic criteria, selection of reports of: and adversely affect functional and social patients, and the time elapsed since the • prolonged inpatient hospital length of stay4 outcomes. stroke. • greater disability with activities of daily Clinical depression is a common complica- living9 OBJECTIVE tion, and in some long term studies was • severe physical impairment10 This article outlines the diagnosis, shown to persist up to 3 years following • poor cognitive function11 pathophysiology and treatment for PSD. stroke.1,2 Depression decreases patients’ par- • poor participation in rehabilitation11 ticipation in rehabilitation and impairs • reduced social activity1 DISCUSSION functional recovery, community reintegration • poor language function1,2 The natural history of PSD suggests that and long term outcomes.3 It increases the cost • failure to return to work8, and most PSD is not immediate but develops of treatment and burden of care to families.
    [Show full text]
  • Recoveries at Risk Report
    Stroke recoveries at risk How the Covid-19 pandemic has affected stroke survivors’ lives and recoveries September 2020 Rebuilding lives after stroke “ The care I received while in hospital has been fantastic! Sadly, in the outside world, it’s nothing but Covid-19, all else has been ignored.” Contents Forewords 4 Executive summary 6 Key findings and impacts 8 Methodology 16 Delaying national progress 18 Treatment 20 Rehabilitation 30 Life after stroke 40 Impacting stroke research 54 Stroke and Covid-19 across the UK 58 How has Covid-19 affected stroke survivors in England? 60 How has Covid-19 affected stroke survivors in Scotland? 64 How has Covid-19 affected stroke survivors in Wales? 70 How has Covid-19 affected stroke survivors in Northern Ireland? 74 References 80 2 3 Forewords “Covid-19 has turned all of our lives upside down this year. What used to feel safe and secure is now unpredictable. Everyday tasks require planning. Communicating with loved ones is different. New technology has to be embraced. Isolation and loneliness can loom large. For stroke survivors, these sorts of challenges are One of the best parts of my job is seeing the remarkable nothing new. When stroke strikes, part of your brain recoveries that many stroke survivors achieve, due in shuts down. And so does a part of you. It’s closer than large part to the ongoing care and support they receive. you think – around 100,000 people will have a stroke in I am sure you will be deeply concerned to read of so the UK this year.
    [Show full text]
  • Stroke Rehabilitation Clinician Handbook 2020 3. Lower Extremity
    Stroke Rehabilitation Clinician Handbook 2020 3. Lower Extremity Motor and Mobility Rehabilitation Robert Teasell MD, Norhayati Hussein MD, Danielle Vanderlaan RRT, Marcus Saikaley HBSc, Mitchell Longval BSc, Jerome Iruthayarajah MSc Table of Contents 3.3.11 Electromechanical and Robotic 3.1 Motor Recovery of the Lower Extremity Assisted Mobility Training ........................... 29 3.3.12 Functional Electrical Stimulation/FES- Post Stroke ....................................................2 Based Neural Orthosis for Gait Cycle ........... 33 3.1.1 Brunnstrom Stages of Motor Recovery 2 3.3.13 Neuromuscular Electrical Stimulation 3.1.2 Factors that Predict Motor Recovery .... 3 ..................................................................... 36 3.2 Assessments of Motor Recovery of the 3.3.14 Biofeedback ...................................... 37 3.3.15 Gait Training with Movement or Lower Extremity and Mobility ........................3 Postural Control Visual Biofeedback ........... 38 3.2.1 Lower Extremity Rehabilitation 3.3.16 EMG Biofeedback ............................. 39 Outcome Measures ........................................ 3 3.3.17 Rhythmic Auditory Stimulation........ 40 3.2.2 Motor Function Outcome Measures .... 6 3.3.18 Dual Task Training ............................. 40 3.2.3 Activities of Daily Living Outcomes ....... 8 3.3.19 Transcutaneous Electrical Nerve 3.2.4 Spasticity Outcomes .............................. 8 Stimulation................................................... 41 3.2.5 Stroke Severity .....................................
    [Show full text]
  • Dysphagia and Aspiration Following Stroke
    EBRSR [Evidence-Based Review of Stroke Rehabilitation] 15 Dysphagia and Aspiration Following Stroke Robert Teasell MD, Norine Foley MSc, Rosemary Martino PhD, Marina Richardson MSc, Brooke Benton RDH, Scott Janssen MSc, Rebecca Orenczuk SLP Last updated: March 2018 Abstract Dysphagia is prominent across the continuum of stroke recovery and its presence is likely to result in pulmonary complications, particularly pneumonia, dehydration and poor nutrition. It is estimated that between 29 and 50 percent of acute stroke survivors are dysphasic. In this chapter, we describe techniques that are commonly used in the detection and assessment of dysphagia and aspiration. We also review the interventions used in the management of dysphagia including texture-modified diets, general dysphagia therapy programs, non-oral (enteral) feeding, medications, electrical stimulation, and physical/olfactory stimulation. 15. Dysphagia and Aspiration Following Stroke pg. 1 of 71 www.ebrsr.com Key Points • There are four sequentially coordinated phases involved in normal swallowing; oral preparatory, oral propulsive, pharyngeal and esophageal. • Dysphagia is characterized by reduced coordination of pharyngeal muscles potentially due to a reduction of cortical connectivity which may have a negative impact on factors of pulmonary function. Furthermore, oral weakness of the facial, palatal and pharyngeal muscles can contribute to dysphasic symptomology. • There are many risk factors indicative of aspiration post-stroke. • Swallow residue may be related to penetration-aspiration and swallow safety. Further research is required to determine the validity of this association. • While silent aspiration shows a lower incidence among acute stroke patients than aspiration, both are prevalent and reliably identified. Further research is required to identify viable treatment options.
    [Show full text]
  • Emotional Changes After Stroke
    Stroke Helpline: 0303 3033 100 Website: stroke.org.uk Emotional changes after stroke Stroke can have all sorts of different effects. Many are physical - that you can see and recognise easily - but there can also be hidden effects, like emotional changes. Although we cannot see feelings or thoughts, changing emotions often lead to a change in behaviour which may signify that all is not well. This factsheet explains some of the emotional changes that can arise after stroke, tips for coping and the help that is available. Why have my emotions been Don’t be surprised if you feel anxious, affected? depressed, frustrated, angry or bewildered. All of these feelings are common. If your emotions or behaviour have changed since your stroke, or you feel different, this What emotional changes can may be partly caused by physical damage happen after stroke? to your brain. Different parts of the brain control different functions within the body Approximately one third of stroke survivors – including how we feel. If the part of your report experiencing some emotional brain that normally controls your emotions problems after their stroke. Usually they becomes damaged by a stroke, the result will fade away with time and you will begin can be a change in how you think, feel or to feel more like your old self. Some of behave. the emotional changes that arise may be more persistent than others and you may No two strokes are ever the same because need coping mechanisms to help you deal the part of the brain affected and the extent with them.
    [Show full text]