Radiations and Key Innovations in an Early Branching Angiosperm Lineage (Annonaceae; Magnoliales)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acta Botanica Brasilica Doi: 10.1590/0102-33062020Abb0051
Acta Botanica Brasilica doi: 10.1590/0102-33062020abb0051 Toward a phylogenetic reclassification of the subfamily Ambavioideae (Annonaceae): establishment of a new subfamily and a new tribe Tanawat Chaowasku1 Received: February 14, 2020 Accepted: June 12, 2020 . ABSTRACT A molecular phylogeny of the subfamily Ambavioideae (Annonaceae) was reconstructed using up to eight plastid DNA regions (matK, ndhF, and rbcL exons; trnL intron; atpB-rbcL, psbA-trnH, trnL-trnF, and trnS-trnG intergenic spacers). The results indicate that the subfamily is not monophyletic, with the monotypic genus Meiocarpidium resolved as the second diverging lineage of Annonaceae after Anaxagorea (the only genus of Anaxagoreoideae) and as the sister group of a large clade consisting of the rest of Annonaceae. Consequently, a new subfamily, Meiocarpidioideae, is established to accommodate the enigmatic African genus Meiocarpidium. In addition, the subfamily Ambavioideae is redefined to contain two major clades formally recognized as two tribes. The tribe Tetramerantheae consisting of only Tetrameranthus is enlarged to include Ambavia, Cleistopholis, and Mezzettia; and Canangeae, a new tribe comprising Cananga, Cyathocalyx, Drepananthus, and Lettowianthus, are erected. The two tribes are principally distinguishable from each other by differences in monoploid chromosome number, branching architecture, and average pollen size (monads). New relationships were retrieved within Tetramerantheae, with Mezzettia as the sister group of a clade containing Ambavia and Cleistopholis. Keywords: Annonaceae, Ambavioideae, Meiocarpidium, molecular phylogeny, systematics, taxonomy et al. 2019). Every subfamily received unequivocally Introduction and consistently strong molecular support except the subfamily Ambavioideae, which is composed of nine Annonaceae, a pantropical family of flowering plants genera: Ambavia, Cananga, Cleistopholis, Cyathocalyx, prominent in lowland rainforests, consist of 110 genera Drepananthus, Lettowianthus, Meiocarpidium, Mezzettia, (Guo et al. -
Annonaceae in the Western Pacific: Geographic Patterns and Four New
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb. -
Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes
ORIGINAL RESEARCH published: 09 January 2019 doi: 10.3389/fpls.2018.01941 Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes Thomas L. P. Couvreur 1*†, Andrew J. Helmstetter 1†, Erik J. M. Koenen 2, Kevin Bethune 1, Rita D. Brandão 3, Stefan A. Little 4, Hervé Sauquet 4,5 and Roy H. J. Erkens 3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France, 2 Institute of Systematic Botany, University of Zurich, Zurich, Switzerland, 3 Maastricht Science Programme, Maastricht University, Maastricht, Netherlands, 4 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, Orsay, France, 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia Edited by: Jim Leebens-Mack, University of Georgia, United States Targeted enrichment and sequencing of hundreds of nuclear loci for phylogenetic Reviewed by: reconstruction is becoming an important tool for plant systematics and evolution. Eric Wade Linton, Central Michigan University, Annonaceae is a major pantropical plant family with 110 genera and ca. 2,450 species, United States occurring across all major and minor tropical forests of the world. Baits were designed Mario Fernández-Mazuecos, by sequencing the transcriptomes of five species from two of the largest Annonaceae Real Jardín Botánico (RJB), Spain Angelica Cibrian-Jaramillo, subfamilies. Orthologous loci were identified. The resulting baiting kit was used to Centro de Investigación y de Estudios reconstruct phylogenetic relationships at two different levels using concatenated and Avanzados (CINVESTAV), Mexico gene tree approaches: a family wide Annonaceae analysis sampling 65 genera and *Correspondence: Thomas L. P. -
(Bedd.) IM Turner (Annonaceae) and a New Variety from India
Taiwania 62(3): 305‒310, 2017 DOI: 10.6165/tai.2017.62.305 Notes on the Taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner (Annonaceae) and a new variety from India Mohan ALISTER*, Gopalaprabhu RAJKUMAR, Ahammed NAZARUDEEN and Alagramam Govindasamy PANDURANGAN Division of Plant Systematics and Evolutionary Science, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram district, Kerala- 695 562, India. * Corresponding author's email: [email protected] (Manuscript received 15 April 2016; accepted 28 May 2017; online published 25 July 2017) ABSTRACT: The taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner is discussed and a variety from Western Ghats of India is newly proposed with taxonomic description and illustration. KEY WORDS: Annonaceae, India, Kerala, New variety, Polyalthia malabarica var. longipedicellata. INTRODUCTION et al., 2012). Approximately 65 species were removed from the genus Polyalthia but at the same time nine The genus Polyalthia (Annonaceae) was first additions were included by merging the genus described by C. L. Blume (1830) based on type Haplostichathus as mentioned. Presently the genus specimen Polyalthia subcordata, which was collected Polyalthia comprises approximately 85 species and its from Java (Xue et al., 2012). The genus was considered distribution ranged to Austral-Asian region as one of the largest genera in paleotropical regions in (Chaowasku et al., 2012). the family Annonaceae with distribution ranging from The genus is now characterised by reticulate East Africa to Madagascar, Indian subcontinent and venation of leaves, generally with more or less South East Asia to Australia with approximately about subcordate or cordate leaf base, axillary to extra 150 species (Verdcourt, 1969; Xue et al., 2011; axillary or terminal inflorescence, 2‒6 ovules per ovary, Saunders et al., 2011). -
Download Download
Acta Brasiliensis 5(1): 25-34, 2021 Artigo Original http://revistas.ufcg.edu.br/ActaBra http://dx.doi.org/10.22571/2526-4338449 New records of Annonaceae in the Northeast Brazil Márcio Lucas Bazantea i , Marccus Alvesb i a Universidade Federal de Pernambuco, Recife, 50670-901, Pernambuco, Brasil. * [email protected] b Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, 50670-901, Pernambuco, Brasil. Received: August 2, 2020 / Accepted: November 8, 2020 / Published online: January 27, 2021 Abstract This study reports nine new records of Annonaceae for the states of Alagoas, Ceará, Paraíba and Pernambuco, in Northeastern Brazil: Duguetia lanceolata A.St.-Hil., D. ruboides Maas & He, D. sooretamae Maas, Guatteria tomentosa Rusby, Hornschuchia bryotrophe Nees, Pseudoxandra lucida R.E.Fr., Trigynaea duckei (R.E.Fr.) R.E.Fr.., Unonopsis guatterioides (A.DC.) R.E.Fr., and Xylopia ochrantha Mart. Descriptions, taxonomical and distributional comments, photos of diagnostic characters, geographic distribution maps and two identification keys, one of the genera of Annonaceae occurring in the Atlantic Forest and Caatinga and another for the new Duguetia records, are provided. Keywords: Atlantic forest, Caatinga, Pseudoxandra, Trigynaea, Unonopsis. Novos registros de Annonaceae no Nordeste do Brasil Resumo Este estudo reporta nove novos registros de Annonaceae para os estados de Alagoas, Ceará, Paraíba e Pernambuco, nordeste do Brasil: Duguetia lanceolata A. St. -Hil., D. ruboides Maas & He, D. sooretamae Maas, Guatteria tomentosa Rusby, Hornschuchia bryotrophe Nees, Pseudoxandra lucida R.E.Fr., Trigynaea duckei (R.E.Fr.) R.E.Fr., Unonopsis guatterioides (A.DC.) R.E.Fr., e Xylopia ochrantha Mart. -
Proefschrift RHJ Erkens V2.Qxp
REFERENCES Aldrich, J., Cherney, B. W., Merlin, E. & Christopherson, L. 1988. The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Cur. Genet. 14: 137-147. Alfaro, M. E., Zoller, S. & Lutzoni, F. 2003. Bayes or Bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 20: 255-266. Allman, E. S. & Rhodes, J. A. 2004. Mathematical models in Biology: an introduction. Cambridge University Press, Cambridge, United Kingdom. APG 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531-553. APG-II 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436. Armbruster, W. S., Debevec, E. M. & Willson, M. F. 2002. Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J. Evol. Biol. 15: 657-672. Aublet, F. 1775. Histoire des plantes de la Guiane françoise. Pierre-François Dodot jeune, London, Paris. Avise, J. C. & Johns, G. C. 1999. Proposal for a standardized temporal scheme of biological classification for extant species. Proc. Natl. Acad. Sci. USA 96: 7358-7363. Avise, J. C. 2000. Phylogeography. The history and formation of species. Harvard University Press, Cambridge, Massachusetts. Bachmann, K. 2001. Evolution and the genetic analysis of populations: 1950-2000. Taxon 50: 7-45. Backlund, A. & Bremer, K. 1998. To be or not to be - principles of classification and monotypic plant families. -
Chec List What Survived from the PLANAFLORO Project
Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al. -
A Conspectus of the Families and Genera of the Vascular Plant Flora of Malaya
A conspectus of the families and genera of the vascular plant flora of Malaya The genera recorded as nalive or naturalized in Malaya arc listed in alphabetical order under the appropiate family. Family delimitation Sollows Brummitt (1992). Italicized names represent those genera represented solely by naturalized species. The number in parenthcscs after each generic name represents lhe numbers of species of that genus in the Malayan Slora. The number of senera, and the nunlher of species. ~.cspectively.in each family arc given in square brackets alter each family name. Fern Allics 1. EQUISETACEAE 11, 1) 1.I Eqniwtnn~L. ( I ) 2. LYCOPODIACEAE 13,191 2.1 Huperzia Rel-nh. (12) 2.7 L~copodiellaHoluh (7) 2 .: Lycopodiun~L. (5) 3. PSILOTACEAE [I, 2J 3.1 Psiloturn Sw. (2) 4. SELAGINELLACEAE 11,291 4.1 Selaginella P Beauv. (2')) Ferns 5. ADlANTACEAE [8,31J 5.1 Adiantnrn L. ( 12) 5.5 Henlionitis I-. (I ) 5.2 Cheilanthes S\%.(4) 5.6 1'1lyrogrrrnlr~1rrLmk ( 1 ) 5.3 Coniograrnrne F6e (I) 5.7 Spngrarnma J.Sm. (7) 5.4 Doryopteris 5.S1ii.(2) 5.8 Taenitis Willd. c2.v Schkuhr (3) 6. ASPLENIACEAE (1,291 6.1 Aspleniurn L. (29) 7. AZOLLACEAE [I, 11 7.1 Azolla Lam. ( I) 8. BLECHNACEAE 14.91 8. I Blechnun~I.. (6) 8.3 Stenochlaena 1.S1n.(I ) 8.2 Brainea J.Srn. (1 ) 8.4 Woodwardia Sm. ( 1 ) 9. CHEIROPLEURIACEAE [1,1] 9.1 Cheiropleuria C'. Prcsl (I) lo. CYATHEACEAE (1,201 10.1 Cyathea Sin. (20) 11. DAVALLIACEAE 12.141 l l I Davallia 5m (I 2) I1 2 Le~~costcgiaC P1e4 (2) 12. -
BMC Evolutionary Biology Biomed Central
BMC Evolutionary Biology BioMed Central Research article Open Access Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea Yvonne CF Su* and Richard MK Saunders* Address: Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China Email: Yvonne CF Su* - [email protected]; Richard MK Saunders* - [email protected] * Corresponding authors Published: 2 July 2009 Received: 3 March 2009 Accepted: 2 July 2009 BMC Evolutionary Biology 2009, 9:153 doi:10.1186/1471-2148-9-153 This article is available from: http://www.biomedcentral.com/1471-2148/9/153 © 2009 Su and Saunders; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Phylogenetic analyses of the Annonaceae consistently identify four clades: a basal clade consisting of Anaxagorea, and a small 'ambavioid' clade that is sister to two main clades, the 'long branch clade' (LBC) and 'short branch clade' (SBC). Divergence times in the family have previously been estimated using non-parametric rate smoothing (NPRS) and penalized likelihood (PL). Here we use an uncorrelated lognormal (UCLD) relaxed molecular clock in BEAST to estimate diversification times of the main clades within the family with a focus on the Asian genus Pseuduvaria within the SBC. Two fossil calibration points are applied, including the first use of the recently discovered Annonaceae fossil Futabanthus. -
Floral Ontogeny of Annonaceae: Evidence for High Variability in floral Form
Annals of Botany 106: 591–605, 2010 doi:10.1093/aob/mcq158, available online at www.aob.oxfordjournals.org Floral ontogeny of Annonaceae: evidence for high variability in floral form Fengxia Xu1 and Louis Ronse De Craene2,* 1South China Botanical Garden, Chinese Academy of Sciences, 723 Xinke Road, Tianhe District, Guangzhou China 510650 and 2Royal Botanic Garden Edinburgh, 20 Inverleith Row, Edinburgh EH3 5LR, UK * For correspondence. E-mail [email protected] Received: 17 February 2010 Returned for revision: 29 March 2010 Accepted: 28 June 2010 Published electronically: 1 September 2010 † Background and Aims Annonaceae are one of the largest families of Magnoliales. This study investigates the comparative floral development of 15 species to understand the basis for evolutionary changes in the perianth, Downloaded from androecium and carpels and to provide additional characters for phylogenetic investigation. † Methods Floral ontogeny of 15 species from 12 genera is examined and described using scanning electron microscopy. † Key Results Initiation of the three perianth whorls is either helical or unidirectional. Merism is mostly trimer- ous, occasionally tetramerous and the members of the inner perianth whorl may be missing or are in double pos- ition. The androecium and the gynoecium were found to be variable in organ numbers (from highly polymerous http://aob.oxfordjournals.org/ to a fixed number, six in the androecium and one or two in the gynoecium). Initiation of the androecium starts invariably with three pairs of stamen primordia along the sides of the hexagonal floral apex. Although inner sta- minodes were not observed, they were reported in other genera and other families of Magnoliales, except Magnoliaceae and Myristicaceae. -
With Two New Species of Shrub from the Forests of the Udzungwas, Tanzania & Kaya
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444227; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lukea gen. nov. (Monodoreae-Annonaceae) with two new species of shrub from the forests of the Udzungwas, Tanzania & Kaya Ribe, Kenya. Martin Cheek1, W.R. Quentin Luke2 & George Gosline1. 1Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK 2East African Herbarium, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya. Summary. A new genus, Lukea Gosline & Cheek (Annonaceae), is erected for two new species to science, Lukea quentinii Cheek & Gosline from Kaya Ribe, S.E. Kenya, and Lukea triciae Cheek & Gosline from the Udzungwa Mts, Tanzania. Lukea is characterised by a flattened circular bowl-shaped receptacle-calyx with a corolla of three petals that give the buds and flowers a unique appearance in African Annonaceae. Both species are extremely rare shrubs of small surviving areas of lowland evergreen forest under threat of habitat degradation and destruction and are provisionally assessed as Critically Endangered and Endangered respectively using the IUCN 2012 standard. Both species are illustrated and mapped. Material of the two species had formerly been considered to be possibly Uvariopsis Engl. & Diels, and the genus Lukea is placed in the Uvariopsis clade of the Monodoreae (consisting of the African genera Uvariodendron (Engl. & Diels) R.E.Fries, Uvariopsis, Mischogyne Exell, Dennettia Bak.f., and Monocyclanthus Keay). -
First Published on the Flora Mesoamericana Website, 27 Dec
Flora Mesoamericana, Volume 2 (1), Annonaceae, page 1 of 85 First published on the Flora Mesoamericana Website, 27 Dec. 2011; updated 19 Apr, 2013. 47. ANNONACEAE (in part) By G.E. Schatz. 1. Anaxagorea A. St. Hil. By G.E. Schatz. Shrubs to medium trees. Stems terete, usually initially densely ferruginous to brown puberulous, often glabrescent. Leaves narrowly elliptic to elliptic to rarely obovate, membranous to chartaceous to slightly coriaceous, upper surface glabrous, lower surface initially puberulous and then glabrescent, the primary vein flat to slightly impressed above, raised below, the secondary venation brochidodromous, flat, slightly raised, or slightly impressed above, raised below, the base acute to rounded and sometimes decurrent, the apex acute to acuminate and sometimes cuspidate. Petioles canaliculate, densely puberulous. Inflorescences axillary or often ramiflorous, 1-several flowered rhipidia, distinctly pedunculate or not; pedicels usually thickening toward the apex, borne in the axil of a minute triangular bract and bearing a larger, usually ampexicaul, broadly ovate bract just below the calyx to midway between the base of the pedicel and calyx, persistent or caducous, densely puberulous. Flowers buds globose, ovoid, or conical. Sepals 3, free, or fused initially and then splitting to their base, valvate to slightly imbricate, ovate to broadly ovate, chartaceous, densely puberulous, erect to often reflexed, rarely caducous prior to anthesis. Petals 6, free, in two valvate, subequal whorls, fleshy, densely puberulous outside, sparsely puberulous inside, inner side with basal cavity surrounding stamens, keeled apically; outer petals scarcely to markedly longer than the inner petals. Floral receptacle convex. Stamens 25-90, free, elliptic to narrowly obovate, the apical prolongation of the connective quadrangular, truncate, the anthers extrorse; innermost stamens staminodial, the staminodia 5-50.