Proefschrift RHJ Erkens V2.Qxp

Total Page:16

File Type:pdf, Size:1020Kb

Proefschrift RHJ Erkens V2.Qxp REFERENCES Aldrich, J., Cherney, B. W., Merlin, E. & Christopherson, L. 1988. The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Cur. Genet. 14: 137-147. Alfaro, M. E., Zoller, S. & Lutzoni, F. 2003. Bayes or Bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 20: 255-266. Allman, E. S. & Rhodes, J. A. 2004. Mathematical models in Biology: an introduction. Cambridge University Press, Cambridge, United Kingdom. APG 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531-553. APG-II 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436. Armbruster, W. S., Debevec, E. M. & Willson, M. F. 2002. Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J. Evol. Biol. 15: 657-672. Aublet, F. 1775. Histoire des plantes de la Guiane françoise. Pierre-François Dodot jeune, London, Paris. Avise, J. C. & Johns, G. C. 1999. Proposal for a standardized temporal scheme of biological classification for extant species. Proc. Natl. Acad. Sci. USA 96: 7358-7363. Avise, J. C. 2000. Phylogeography. The history and formation of species. Harvard University Press, Cambridge, Massachusetts. Bachmann, K. 2001. Evolution and the genetic analysis of populations: 1950-2000. Taxon 50: 7-45. Backlund, A. & Bremer, K. 1998. To be or not to be - principles of classification and monotypic plant families. Taxon 47: 391-400. Barraclough, T. G. & Nee, S. 2001. Phylogenetics and speciation. Trends Ecol. Evol. 16: 391-399. Beatty, J. 1982. Classes and cladistics. Syst. Zool. 31: 25-34. Beaumont, M. A. & Rannala, B. 2004. The Baysian revolution in genetics. Nat. Rev. Gen. 5: 251-261. Beheregaray, L. B., Gibbs, J. P., Havill, N., Fritts, T. H., Powell, J. R. & Caccone, A. 2004. Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Gálapagos. Proc. Natl. Acad. Sci. USA 101: 6514-6519. Bentham, G. 1860. Notes on Anonaceae. J. Proc. Linn. Soc. 5: 67-72. Bermingham, E. & Martin, A. P. 1998. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of Central America. Molec. Ecol. 7: 499-517. Blanc, V. & Davidson, N. O. 2003. C-to-U RNA editing: mechanisms leading to genetic diversity. J, Biol. Chem. 278: 1395-1398. Blanco, M. A., Whitten, W. M., Penneys, D. S., Williams, N. H., Neubig, K. M. & Endara, L. 2006. A simple and safe method for rapid drying of plant specimens using forced-air space heaters. Selbyana 27: 83-87. Bridson, D. & Forman, L. 1992. The herbarium handbook. Revised edition. Royal Botanic Gardens Kew, United Kingdom. Brooks, D. R. & McLennan, D. A. 2002. The nature of diversity: an evolutionary voyage of discovery. The University of Chicago Press, Chicago and London. Bruns, T. D., White, T. J. & Taylor, F. M. 1991. Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22: 525-564. Bruns, T. D., Vilgalys, R., Barns, S. M., Gonzalez, D., Hibbett, D. S., Lane, D. J., Simon, L., Stickel, S., Szaro, T. M., Weisburg, W. G. & Sogin, M. L. 1992. Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol. Phyl. Evol. 1: 231-241. Buchwald, N. F. 1970. Robert E. Fries. Notitser (in Danish). Friesia 9: 348-354. Burnham, R. J. & Graham, A. 1999. The history of Neotropical vegetation: new developments and status. Ann. Missouri Bot. Gard. 86: 546-589. Bygrave, P. 2000. Molecular Systematics of Annonaceae Juss. PhD Thesis. Botany department, School of Plant Sciences, The University of Reading, UK. Camin, J. H. & Sokal, R. R. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311-326. Chan, K. M. A. & Moore, B. R. 2002. Whole-tree methods for detecting differential diversification rates. Syst. Biol. 51: 855-865. Chan, K. M. A. & Moore, B. R. 2005. SYMMETREE: whole-tree analysis of differential diversification rates. Bioinf. 21: 1709-1710. Chanderbali, A. S., van der Werff, H. & Renner, S. S. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88: 104-134. Chanderbali, A. S. 2004. Endlicheria (Lauraceae). Pp. 141 in, Flora Neotropica Monograph, vol. 91. New York Botanical Garden Press, New York. Chardon, C. E. 1947. La contribución del doctor Roberto E. Fries a los estudios botánicos del Nuevo Mundo. Darwiniana 7: 497-503. Chase, M. W., Fay, M. F., Soltis, D. E., Soltis, P. S., Takahashi, K. T. & Savolainen, V. 2006. Simple phylogenetic tree searches easily “succeed” with large matrices of single genes. Taxon 55: 573-578. Chatrou, L. W. 1997. Studies in Annonaceae XXVIII. Macromorphological variation of recent invaders in northern EFERENCES R Central America: the case of Malmea (Annonaceae). Amer. J. Bot. 84: 861-869. Chatrou, L. W., Rainer, H. & Maas, P. J. M. 2004. Annonaceae. Pp. 18-20 in: Smith, N., Mori, S. A., Henderson, A., Stevenson, D. W. & Heald, S. V., (Eds.), Flowering Plants of the Neotropics, Princeton University Press, Princeton, New Jersey, U.S.A. Check, E. 2006. Treasure island: pinning down a model ecosystem. Nature 439: 378-379. Chesters, K. I. M. 1955. Some plant remains from the Upper Cretaceous and Tertiary of West Africa. Ann. Mag. Nat. Hist. 12: 489-504. 149 Cieslak, T., Polepalli, J. S., White, A., Müller, K., Borsch, T., Barthlott, W., Steiger, J., Marchant, A. & Legendre, L. 2005. Phylogenetic analysis of Pinguicula (Lentibulariaceae): Chloroplast DNA sequences and morphology support several geographically distinct radiations. Amer. J. Bot. 92: 1723-1736. Classen-Bockhoff, R., Speck, T., Tweraser, E., Wester, P., Thimm, S. & Reith, M. 2004. The staminal lever mechanism in Salvia L. (Lamiaceae): A key innovation for adaptive radiation? Org. Divers. Evol. 4: 189- 205. Coates, A. G. & Obando, J. A. 1996. The geological evolution of the Central American Isthmus. Pp. 21-56 in: Jackson, J. B. C., Budd, A. F. & Coates, A. G., (Eds.), Evolution and environment in tropical America, The University of Chicago Press, Chicago. Colinvaux, P. 1996. Quaternary environmental history and forest diversity in the Neotropics. Pp. 359-405 in: Jackson, J. B. C., Budd, A. F. & Coates, A. G., (Eds.), Evolution and environment in tropical America, The University of Chicago Press, Chicago & London. Colless, D. H. 1982. Review of phylogenetics: the theory and practice of phylogenetic systematics, by E.O. Wiley. Syst. Zool. 31: 100-104. Couvreur, T. L. P., Gereau, R. E., Wieringa, J. J. & Richardson, J. E. in press. Description of four new species of Monodora and Isolona (Annonaceae) from Tanzania and an overview of Tanzanian Annonaceae diversity. Adansonia. Cracraft, J. 1985. Biological diversity and it’s causes. Ann. Missouri Bot. Gard. 72: 794-822. Crawford, D. J. & Mort, M. E. 2004. Single-locus molecular markers for inferring relationships at lower taxonomic levels: observations and comments. Taxon 53: 631-635. Cronn, R. C., Small, R. L., Haselkorn, T. & Wendel, J. F. 2002. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Amer. J. Bot. 89: 707-725. Cronquist, A. 1978. Once again, what is a species? Pp. 3-20 in: Knutson, L. V., (Ed.), Biosystematics in agriculture, Allenheld Osmun, Montclair, New Jersey. Csank, C., Taylor, F. M. & Martindale, D. W. 1990. Nuclear pre-mRNA introns: analysis and comparison of intron sequences from Tetrahymena thermophila and other eukaryotes. Nucl. Acids Res. 18: 5133-5141. Cuénoud, P., Savolainen, V., Chatrou, L. W., Powell, M., Grayer, R. J. & Chase, M. W. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Amer. J. Bot. 89: 132-144. Cummings, M. P., Handley, S. A., Myers, D. S., Reed, D. L., Rokas, A. & Winka, K. 2003. Comparing Bootstrap and Posterior Probability Values in the Four-Taxon Case. Syst. Biol. 52: 477-487. Dalton, R. 2003. Natural history collections in crisis as funding is slashed. Nature 423: 575. Dannenfeldt, K. H. 1968. Leonhard Rauwolf, sixteenth-century physician, botanist, and traveler. Harvard University Press, Cambridge, Massachusetts, USA. Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E. & Savolainen, V. 2004. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad. Sci. USA 101: 1904- 1909. Davis, C. C., Bell, C. D., Fritsch, P. W. & Mathews, S. 2002. Phylogeny of Acridocarpus-Brachylophon (Malphigiaceae): Implications for Tertiary tropical floras and Afroasian biogeography. Evolution 56: 2395-2405. Deroin, T. 1997. Confirmation and origin of the paracarpy in Annonaceae, with comments on some methodological aspects. Candollea 52: 45-58. Derome, N., Métayer, K., Montchamp-Moreau, C. & Veuille, M. 2004. Signature of selective sweep associated with the evolution of sex-ratio drive in Drosophila simulans. Genetics 166: 1357-1366. Després, L., Gielly, L., Redoutet, B. & Taberlet, P. 2003. Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Mol. Phyl. Evol. 27: 185-196. Dias, P., Assis, L. C. S. & Udulutsch, R. G. 2005. Monophyly vs. paraphyly in plant systematics. Taxon 54: 1039- 1040. Dice, L. R. 1945. Measures of the amount of ecological association between species. Ecology 26: 297-302. Diels, L. 1905. In: Pilger, R. - Beiträge zur Flora des Hylaea nach den Sammlungen von E. Ule. Verh. Bot. Vereins Prov. Brandenburg 47: 125-136; pl. 1. Diels, L. 1906. In: Urban, I. - Plantae novae andinae imprimis Weberbauerianae. I. 9. Annonaceae andinae. Bot. Jahrb. Syst. 37: 408-410. Diels, L. 1924a. In: Mildbread, J. - Plantae Tessmannianae peruvianae 1. Notizbl.
Recommended publications
  • The Potential Use of Annona (Annonaceae) by Products As a Source of Botanical Insecticides
    The potential use of Annona (Annonaceae) by products as a source of botanical insecticides Leandro do Prado Ribeiroa*, Camila Moreira de Souzab, Keylla Utherdyany Bicalhoc, Edson Luiz Lopes Baldinb, Moacir Rossi Forimc, João Batista Fernandesc, José Djair Vendramimd a Research Center for Family Agriculture, Agricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Chapecó, Santa Catarina, Brazil. *E-mail: [email protected]; bDepartment of Crop Protection, College of Agricultural Sciences, São Paulo State University (FCA/UNESP) Botucatu, São Paulo, Brazil; d Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil; c Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil. INTRODUCTION In addition, some species of Annona genera (e.g.: Annona muricata, Annona squamosa, Annona cherimolia, and Annona The structural and functional diversity of secondary metabolites cherimolia x Annona squamosa) have great economic (allelochemicals) is a key factor for the survival and evolutionary importance due to their edible fruits of ample commercial success of plant species inhabiting an environment with an interest. Consequently, a considerably cultivated area (~ 14,000 abundance of natural enemies. Therefore, the tropical flora, hectares) with these species is observed in Brazil. However, most with its unique biodiversity, is a promising natural reservoir of of Annona fruits production are destined for fruit-processing bioactive substances. In this context, Brazil has the highest plant industries and commercialized as frozen pulps for juice genetic diversity in the world offering enormous potential for preparations due to its small shelf life.
    [Show full text]
  • Anatomical Structure of Barks in Neotropical Genera of Annonaceae
    Ann. Bot. Fennici 44: 79–132 ISSN 0003-3847 Helsinki 28 March 2007 © Finnish Zoological and Botanical Publishing Board 2007 Anatomical structure of barks in Neotropical genera of Annonaceae Leo Junikka1 & Jifke Koek-Noorman2 1) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland (present address: Botanic Garden, P.O. Box 44, FI-00014 University of Helsinki, Finland) (e-mail: [email protected]) 2) National Herbarium of the Netherlands, P.O. Box 80102, 3508 TC Utrecht, The Netherlands (e-mail: [email protected]) Received 1 Oct. 2004, revised version received 23 Aug. 2006, accepted 21 Jan. 2005 Junikka, L. & Koek-Noorman, J. 2007: Anatomical structure of barks in Neotropical genera of Annonaceae. — Ann. Bot. Fennici 44 (Supplement A): 79–132. The bark anatomy of 32 Neotropical genera of Annonaceae was studied. A family description based on Neotropical genera and a discussion of individual bark compo- nents are presented. Selected character states at the family and genus levels are sur- veyed for identification purposes. This is followed by a discussion on the taxonomical and phylogenetic relevance of bark characters according to a phylogram in preparation based on molecular characters. Although the value of many bark anatomical characters turned out to be insignificant in systematic studies of the family, some features lend support to recent phylogenetic results based on morphological and molecular data sets. The taxonomically most informative features of the bark anatomy are sclerification of phellem cells, shape of fibre groups and occurrence of crystals in bark components. Key words: anatomy, Annonaceae, bark, periderm, phloem, phylogeny, rhytidome, taxonomy Introduction collections and the development of some novel methods a multidisciplinary programme on Anno- Woody members of the Annonaceae are one of naceae was embarked on in 1983 at the Univer- the most species-rich components in the tropi- sity of Utrecht.
    [Show full text]
  • <I> Sapranthus</I> (<I>Annonaceae
    Blumea 63, 2018: 54–66 ISSN (Online) 2212-1676 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2018.63.01.06 Revision of the Neotropical genus Sapranthus (Annonaceae) G.E. Schatz1, P.J.M. Maas2, H. Maas-van de Kamer2, L.Y.T. Westra2, J.J. Wieringa2 Key words Abstract A taxonomic revision of the genus Sapranthus is presented. Within the genus Sapranthus 8 species are recognized, 2 of which are new. Distinguishing morphological characteristics are discussed, and a dichotomous Annonaceae key to all species is given. The species treatments include descriptions, full synonymy, geographical and ecological descriptions notes, vernacular names, and taxonomic notes. Distribution maps are presented of all species, and a complete morphology identification list of exsiccatae examined is included. Neotropics phylogeny Published on 26 June 2018 Sapranthus taxonomy vernacular names Preamble has been recorded, varying from 3–30 cm diam, rarely to 60 “The latter [flowers], when first opening, are of a very light green, but they cm diam in S. palanga. gradually change into a very dark bluish black, and then emit a most power- ful carrion-like odour, quite as disagreeable as that of some Stapelias, Leaves Aristolochias, and Aroideae.” (Seemann 1866: 369). Leaves are simple, entire, petiolate, and estipulate, and ar- “The rankest and filthiest smelling thing I ever smelled, has the odor of car- ranged alternately in a single plane along lateral branches rion.” (M.E. Jones 24, 2 July 1892.) (distichous), and are usually deciduous. Petioles are shallowly “Flowers...with unpleasant odor, like that of dirty socks...” (D.A.
    [Show full text]
  • C3 Primitive Angiosperms
    Magnoliids & other Primitive Angiosperms Revised 5th of May 2015 Angiosperm, pl angiosperms; Angiospermae n (Greek anggeion (angeion), vessel, small container, & Greek σπέρµα, sperma, seed) A major division of the plant kingdom, commonly called flowering plants as their reproductive organs are in flowers, having seeds which develop in a closed ovary made of carpels, a very reduced gametophyte, & endosperm develop from a triple fusion nucleus; flowering plant producing seeds enclosed in a structure derived from the ovary; flowering plant, plants with ovules enclosed in ovary. A division of the seed plants (spermatophytes) that bear ovules & seeds in closed megaspores (carpels) in contrast to gymnosperms, which have exposed ovules & seeds, born “naked” on the megasporophylls. Angiosperms are distinguished by a unique process of sexual reproduction called “double fertilization”. According to the number of leaves (cotyledons) present in the embryo, two major groups are distinguished, the Monocotyledons & the Dicotyledons. Angiosperms are commonly referred to as “flowering plants: even though the reproductive organs of some gymnosperms are also borne in structures that fulfill the definition of a flower. Cf gymnosperm. Angiosperms have traditionally been split into monocotyledons & dicotyledons, or plants with one or two seed leaves respectively. One group of plants that have two seeds leaves was problematic, as it also had primitive flowers & some traits in common with monocots. This group is the Magnoliids, or primitive angiosperms. The remainder of the dicots are called Eudicots, the prefix eu-, from Greek ἐὐς, eus, good, meaning the good dicots. Magnoliids (Eumagnoliids?) About 8,500 (5,000-9,000) spp in 20 angiosperm families, of large trees, shrubs, vines, lianas, & herbs that are neither eudicotyledons nor monocotyledons, distributed in tropical & temperate areas.
    [Show full text]
  • Early Floral Developmental Studies in Annonaceae
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Biosystematics and Ecology Jahr/Year: 1996 Band/Volume: 10 Autor(en)/Author(s): Leins Peter, Erbar Claudia Artikel/Article: Early floral developmental studies in Annonaceae. In: Reproductive Morphology in Annonaceae. 1-28 Early floral developmental©Akademie d. Wissenschaften studies Wien; download in unter Annonaceae www.biologiezentrum.at Peter LEINS and Claudia Erba r Abstract: In theAnnonaceae the perianth mostly consists of three trimerous whorls, with a slight tendency to a spiral sequence of their members. The androecium and the gynoecium are variable in the number of their organs (high polymery to low, fixed numbers). In this study the early development of polymerous androecia is investigated Artabotrysin hexapetalus andAnnona montana. In these species the androecia begin their development with six stamens in the comers of a hexagonal floral apex. This early developmental pattem resembles that in someAristolochiaceae andAlismatales. Not only in this respect but also because of other important features theAnnonaceae may be regarded as closely related to these two groups, but as more archaic. The carpels in the mostly choricarpous gynoecia areconduplicate (not peltate) or very rarely (Cananga) slightly peltate. The gynoecium ofMonodora consists of a single, clearly peltate carpel with a very peculiar laminal placentation (the ovules are inserted in seven double rows). This unusual condition can be interpreted as the expression sequentialof two genetical programs during development: the program for a single carpel and that for a pluricarpellate gynoecium(Simulation of a syncarpous gynoecium). Introduction - Morphology of the adult flowers The familiy Annonaceae, with about 130 genera and 2300 species by far the largest family of the Magnoliales, makes up about three-fourths of the order (CRONQUIST 1981).
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • Parallel Diversifications of Cremastospermaand Mosannona(Annonaceae), Tropical Rainforest Trees Tracking Neogene Upheaval Of
    Downloaded from http://rsos.royalsocietypublishing.org/ on January 31, 2018 Parallel diversifications of Cremastosperma and rsos.royalsocietypublishing.org Mosannona (Annonaceae), Research tropical rainforest trees Cite this article: Pirie MD, Maas PJM, tracking Neogene upheaval Wilschut RA, Melchers-Sharrott H, Chatrou LW. 2018 Parallel diversifications of Cremastosperma and Mosannona of South America (Annonaceae), tropical rainforest trees 1 2 3 tracking Neogene upheaval of South America. Michael D. Pirie ,PaulJ.M.Maas ,RutgerA.Wilschut , R. Soc. open sci. 5:171561. Heleen Melchers-Sharrott4 and Lars W. Chatrou5 http://dx.doi.org/10.1098/rsos.171561 1Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Anselm-Franz-von-Bentzelweg 9a, 55099 Mainz, Germany 2Naturalis Biodiversity Center, Section Botany, PO Box 9517, 2300 RA Leiden, Received: 6 October 2017 The Netherlands Accepted: 21 December 2017 3Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands 4Omgevingsdienst Haaglanden, PO Box 14060, 2501 GB The Hague, The Netherlands 5Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Subject Category: Wageningen, The Netherlands Biology (whole organism) MDP, 0000-0003-0403-4470;RAW,0000-0002-2559-9799; LWC, 0000-0003-0131-0302 Subject Areas: evolution/biogeography Much of the immense present day biological diversity of Neotropical rainforests originated from the Miocene onwards, a Keywords: period of geological and ecological upheaval in South America. Andean orogeny, Pebas system, molecular We assess the impact of the Andean orogeny, drainage of Lake dating, Neotropics, niche modelling, Panama Pebas and closure of the Panama isthmus on two clades of isthmus tropical trees (Cremastosperma, ca 31 spp.; and Mosannona, ca 14 spp.; both Annonaceae).
    [Show full text]
  • Parallel Radiations of Cremastosperma and Mosannona (Annonaceae), Tropical Rainforest Trees Tracking Neogene Upheaval of the South American Continent
    bioRxiv preprint doi: https://doi.org/10.1101/141127; this version posted June 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Parallel radiations of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of the South American continent Michael D. Pirie1, Paul J. M. Maas2, Rutger A. Wilschut3, Heleen Melchers-Sharrott4 & Lars W. Chatrou5 1Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Anselm- Franz-von-Bentzelweg 9a, 55099 Mainz, Germany 2Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands 3Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands 4Omgevingsdienst Haaglanden, P.O. Box 14060, 2501 GB The Hague, The Netherlands 5Wageningen University, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Abstract Much of the immense present day biological diversity of Neotropical rainforests originated from the Miocene onwards, a period of geological and ecological upheaval in South America. We assess the impact of the Andean orogeny, drainage of lake Pebas, and closure of the Panama Isthmus on two clades of trees (Cremastosperma, c. 31 spp.; and Mosannona, c. 14 spp.; both Annonaceae) found in humid forest distributed across the transition zones between the Andes and Western (lowland) Amazonia and between Central and South America. We inferred phylogenies based on c. 80% of recognised species of each clade using plastid and nuclear encoded sequence markers, revealing similar patterns of geographically restricted clades.
    [Show full text]
  • Plantas RECOMENDACIONES PARA LA CONSERVACIÓN Especializadas
    .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .............................................................................................................................................................................................................................................................................................................................................................................................no. 27 ....................................................................................................................... 27 Perú: Tapiche-Blanco Perú:Tapiche-Blanco Instituciones participantes/ Participating Institutions The Field Museum Centro para el Desarrollo del Indígena Amazónico (CEDIA) Instituto de Investigaciones de la Amazonía Peruana (IIAP) Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) Herbario Amazonense de la Universidad Nacional de la Amazonía Peruana (AMAZ) Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos Centro de Ornitología y Biodiversidad (CORBIDI)
    [Show full text]
  • Angiosperms) Julien Massoni1*, Thomas LP Couvreur2,3 and Hervé Sauquet1
    Massoni et al. BMC Evolutionary Biology (2015) 15:49 DOI 10.1186/s12862-015-0320-6 RESEARCH ARTICLE Open Access Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms) Julien Massoni1*, Thomas LP Couvreur2,3 and Hervé Sauquet1 Abstract Background: With 10,000 species, Magnoliidae are the largest clade of flowering plants outside monocots and eudicots. Despite an ancient and rich fossil history, the tempo and mode of diversification of Magnoliidae remain poorly known. Using a molecular data set of 12 markers and 220 species (representing >75% of genera in Magnoliidae) and six robust, internal fossil age constraints, we estimate divergence times and significant shifts of diversification across the clade. In addition, we test the sensitivity of magnoliid divergence times to the choice of relaxed clock model and various maximum age constraints for the angiosperms. Results: Compared with previous work, our study tends to push back in time the age of the crown node of Magnoliidae (178.78-126.82 million years, Myr), and of the four orders, Canellales (143.18-125.90 Myr), Piperales (158.11-88.15 Myr), Laurales (165.62-112.05 Myr), and Magnoliales (164.09-114.75 Myr). Although families vary in crown ages, Magnoliidae appear to have diversified into most extant families by the end of the Cretaceous. The strongly imbalanced distribution of extant diversity within Magnoliidae appears to be best explained by models of diversification with 6 to 13 shifts in net diversification rates. Significant increases are inferred within Piperaceae and Annonaceae, while the low species richness of Calycanthaceae, Degeneriaceae, and Himantandraceae appears to be the result of decreases in both speciation and extinction rates.
    [Show full text]
  • Is Pseudoxandra Spiritus-Sancti (Annonaceae), with Its Male and Bisexual Flowers, an Androdioecious Species?
    Filogenômica, morfologia e taxonomia na tribo Malmeeae (Malmeoideae, Annonaceae): implicações na evolução da androdioicia Phylogenomics, morphology and taxonomy in tribe Malmeeae (Malmeoideae, Annonaceae): implications on the evolution of androdioecy Jenifer de Carvalho Lopes São Paulo 2016 Filogenômica, morfologia e taxonomia na tribo Malmeeae (Malmeoideae, Annonaceae): implicações na evolução da androdioicia Phylogenomics, morphology and taxonomy in tribe Malmeeae (Malmeoideae, Annonaceae): implications on the evolution of androdioecy Jenifer de Carvalho Lopes Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica. Orientador: Renato de Mello-Silva São Paulo 2016 Lopes, Jenifer de Carvalho Filogenômica, morfologia e taxonomia na tribo Malmeeae (Malmeoideae, Annonaceae): implicações na evolução da androdioicia / 98 Tese (Doutorado) – Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica 1. Androdioicia. 2. Annonaceae. 3. Filogenômica. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora: ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). ______________________ Prof. Dr. Renato de Mello-Silva Orientador Metafísica? Que metafísica têm aquelas árvores? A de serem verdes e copadas e de terem ramos E a de dar fruto na sua hora, o que não nos faz pensar, A nós, que não sabemos dar por elas. Mas que melhor metafísica que a delas, Que é a de não saber para que vivem Nem saber que o não sabem? Alberto Caeiro, heterônimo de Fernando Pessoa Trecho de Guardador de Rebanhos, poema quinto Agradecimentos Gostaria de agradecer à Universidade de São Paulo pela estrutura fornecida para o desenvolvimento da minha pesquisa e formação acadêmica.
    [Show full text]
  • Radiations and Key Innovations in an Early Branching Angiosperm Lineage (Annonaceae; Magnoliales)
    bs_bs_banner Botanical Journal of the Linnean Society, 2012, 169, 117–134. With 4 figures Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales) ROY H. J. ERKENS1,2*, LARS W. CHATROU3 and THOMAS L. P. COUVREUR4 1Utrecht University, Institute of Environmental Biology, Ecology and Biodiversity Group, Padualaan 8, 3584 CH, Utrecht, the Netherlands 2Maastricht Science Program, Maastricht University, Kapoenstraat 2, 6211 KW, Maastricht, The Netherlands 3Netherlands Centre for Biodiversity Naturalis (section NHN), Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands 4Institut de Recherche pour le Développement (IRD), UMR-DIADE, 911, avenue Agropolis, BP 64501, F-34394 Montpellier cedex 5, France Received 2 August 2011; revised 30 September 2011; accepted for publication 22 December 2011 Biologists are fascinated by species-rich groups and have attempted to discover the causes for their abundant diversification. Comprehension of the causes and mechanisms underpinning radiations and detection of their frequency will contribute greatly to the understanding of the evolutionary origin of biodiversity and its ecological structure. A dated and well-resolved phylogenetic tree of Annonaceae was used to study diversification patterns in the family in order to identify factors that drive speciation and the evolution of morphological (key) characters. It was found that, except for Goniothalamus, the largest genera in the family are not the result of radiations. Furthermore, the difference in species numbers between subfamilies Annonoideae (former long branch clade) and Malmeoideae (former short branch clade) cannot be attributed to significant differences in the diversification rate. Most of the speciation in Annonaceae is not distinguishable from a random branching process (i.e.
    [Show full text]