Review of the External Carotid Plexus: Anatomy, Function, and Clinical Manifestations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cranial Nerves 9Th & 10Th
Cranial Nerves 9th & 10th Neuroanatomy block-Anatomy-Lecture 8 Editing file Objectives At the end of the lecture, students should be able to: ● Define the deep origin of both Glossopharyngeal and Vagus Nerves. ● Locate the exit of each nerve from the brain stem. ● Describe the course and distribution of each nerve . ● List the branches of both nerves. Color guide ● Only in boys slides in Green ● Only in girls slides in Purple ● important in Red ● Notes in Grey Glossopharyngeal (IX) 9th Cranial Nerve ● it's mixed nerve, a Sensory nerve with preganglionic parasympathetic and few motor fibers ● It has no real nucleus to itself. Instead it shares nuclei with VII (facial) and X (vagus). Superficial attachment Course ● It arises from the ventral aspect of the 1. It Passes forwards between medulla by a linear series of small Internal jugular vein and rootlets, in groove between olive and External carotid artery. inferior cerebellar peduncle. ● It leaves the cranial cavity by passing 2. Lies Deep to Styloid process. through the jugular foramen in company with the Vagus , and the Accessory 3. Passes between external and nerves and the Internal jugular vein. internal carotid arteries at the posterior border of Stylopharyngeus then lateral to it. 4. It reaches the pharynx by passing between middle and inferior constrictors, deep to Hyoglossus, where it breaks into terminal branches. 3 Glossopharyngeal (IX) 9th Cranial Nerve Ganglia & Communications ● Small with no branches. Superior Ganglion ● It is connected to the Superior Cervical sympathetic ganglion. ● Large and carries general sensations from pharynx, soft palate and tonsil. Inferior ● ganglion It is connected to Auricular Branch of Vagus. -
The Mandibular Nerve - Vc Or VIII by Prof
The Mandibular Nerve - Vc or VIII by Prof. Dr. Imran Qureshi The Mandibular nerve is the third and largest division of the trigeminal nerve. It is a mixed nerve. Its sensory root emerges from the posterior region of the semilunar ganglion and is joined by the motor root of the trigeminal nerve. These two nerve bundles leave the cranial cavity through the foramen ovale and unite immediately to form the trunk of the mixed mandibular nerve that passes into the infratemporal fossa. Here, it runs anterior to the middle meningeal artery and is sandwiched between the superior head of the lateral pterygoid and tensor veli palatini muscles. After a short course during which a meningeal branch to the dura mater, and the nerve to part of the medial pterygoid muscle (and the tensor tympani and tensor veli palatini muscles) are given off, the mandibular trunk divides into a smaller anterior and a larger posterior division. The anterior division receives most of the fibres from the motor root and distributes them to the other muscles of mastication i.e. the lateral pterygoid, medial pterygoid, temporalis and masseter muscles. The nerve to masseter and two deep temporal nerves (anterior and posterior) pass laterally above the medial pterygoid. The nerve to the masseter continues outward through the mandibular notch, while the deep temporal nerves turn upward deep to temporalis for its supply. The sensory fibres that it receives are distributed as the buccal nerve. The 1 | P a g e buccal nerve passes between the medial and lateral pterygoids and passes downward and forward to emerge from under cover of the masseter with the buccal artery. -
Association of Arrhythmia in Patients with Cervical Spondylosis: a Nationwide Population-Based Cohort Study
Journal of Clinical Medicine Article Association of Arrhythmia in Patients with Cervical Spondylosis: A Nationwide Population-Based Cohort Study Shih-Yi Lin 1,2, Wu-Huei Hsu 1,3, Cheng-Chieh Lin 1,4, Cheng-Li Lin 5,6, Chun-Hao Tsai 1,7, Chih-Hsueh Lin 1,4, Der-Cherng Chen 7, Tsung-Chih Lin 8, Chung-Y. Hsu 1 and Chia-Hung Kao 1,9,10,* ID 1 Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; [email protected] (S.-Y.L.); [email protected] (W.-H.H.); [email protected] (C.-C.L.); [email protected] (C.-H.T.); [email protected] (C.-H.L.); [email protected] (C.-Y.H.) 2 Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung 404, Taiwan 3 Division of Pulmonary and Critical Care Medicine, China Medical University Hospital and China Medical University, Taichung 404, Taiwan 4 Department of Family Medicine, China Medical University Hospital, Taichung 404, Taiwan 5 Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan; [email protected] 6 College of Medicine, China Medical University, Taichung 404, Taiwan 7 Department of Orthopedics, China Medical University Hospital, Taichung 404, Taiwan; [email protected] 8 Department of Orthopedics, St. Martin De Porres Hospital, Chiayi 600, Taiwan; [email protected] 9 Department of Nuclear Medicine, China Medical University Hospital, Taichung 404, Taiwan 10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan * Correspondence: [email protected]; Tel.: +886-4-2205-2121 (ext. -
Morphometry and Morphology of Foramen Petrosum in Indian Population
Basic Sciences of Medicine 2020, 9(1): 8-9 DOI: 10.5923/j.medicine.20200901.02 Morphometry and Morphology of Foramen Petrosum in Indian Population Rajani Singh1,*, Nand Kishore Gupta1, Raj Kumar2 1Department of Anatomy, Uttar Pradesh University of Medical Sciences Saifai 206130 Etawah UP India 2Department of Neurosugery Uttar Pradesh University of Medical Sciences Saifai 206130 Etawah UP India Abstract Greater wing of sphenoid contains three constant foramina, Foramen ovale, foramen rotundum and foramen spinosum. The presence of foramen Vesalius and foramen petrosum are inconsistent. Normally foramen ovale transmits mandibular nerve, accessory meningeal artery, lesser petrosal nerve and emissary vein. When foramen petrosum is present, lesser petrosal nerve passes through petrosal foramen instead of foramen ovale. Lesser petrosal nerve distribute postganglionic fibers from otic ganglion to parotid gland. In absence of knowledge of petrosal foramen transmitting lesser petrosal nerve, the clinician may damage the nerve during skull base surgery creating complications like hyperemia of face and profuse salivation from the parotid gland (following atropine administration), lacrimation (crocodile tears syndrome) and mucus nasal secretion. Considering clinical implications associated with petrosal foramen, the study was carried out. The aim of the study is to determine the prevalence of petrosal foramen in Indian Population and to bring out associated clinical significance. The study was conducted in the department of Anatomy UPUMS Saifai Etawah Indian. 30 half skulls were observed for the presence of petrosal foramina and morphometry was also done. Literature search was carried out, our findings were compared with previous work and associated clinical implications were bought out. Keywords Petrosal foramen, Lesser petrosal nerve, Foramen ovale patients. -
The Neuroanatomy of Female Pelvic Pain
Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis. -
Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer
Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal -
CVM 6100 Veterinary Gross Anatomy
2010 CVM 6100 Veterinary Gross Anatomy General Anatomy & Carnivore Anatomy Lecture Notes by Thomas F. Fletcher, DVM, PhD and Christina E. Clarkson, DVM, PhD 1 CONTENTS Connective Tissue Structures ........................................3 Osteology .........................................................................5 Arthrology .......................................................................7 Myology .........................................................................10 Biomechanics and Locomotion....................................12 Serous Membranes and Cavities .................................15 Formation of Serous Cavities ......................................17 Nervous System.............................................................19 Autonomic Nervous System .........................................23 Abdominal Viscera .......................................................27 Pelvis, Perineum and Micturition ...............................32 Female Genitalia ...........................................................35 Male Genitalia...............................................................37 Head Features (Lectures 1 and 2) ...............................40 Cranial Nerves ..............................................................44 Connective Tissue Structures Histologic types of connective tissue (c.t.): 1] Loose areolar c.t. — low fiber density, contains spaces that can be filled with fat or fluid (edema) [found: throughout body, under skin as superficial fascia and in many places as deep fascia] -
Clinical Anatomy of Greater Petrosal Nerve and Its Surgical Importance
[Downloaded free from http://www.indianjotol.org on Monday, August 18, 2014, IP: 218.241.189.21] || Click here to download free Android application for this journal ORIGINAL ARTICLE Clinical anatomy of greater petrosal nerve and its surgical importance Prashant E Natekar, Fatima M De Souza Department of Anatomy, Goa Medical College, Bambolim, Goa, India Background: Surgical approach towards greater petrosal nerve has to be done with caution as many surgeons ABSTRACT are unfamiliar with the anatomy of the facial nerve. The anatomical landmarks selected must be reliable and above all easy to identify for identification of the greater petrosal nerve so as to avoid injury to the structures in the middle cranial fossa. Observation and Results: The present study is carried out on 100 temporal bones by examining the following measurements of the right and the left sides a) length of the hiatus for grater petrosal superficial nerve b) distance from superior petrosal sinus c) distance from lateral margin of middle cranial fossa d) arcuate eminence and e) distance from exit to the foramen ovale. Conclusion: The anatomical landmarks selected must be reliable and above all easy to identify. Bony structures are more suitable than soft tissue or cartilaginous landmarks because of their rigid and reliable location. These anatomical landmarks will definitely help the surgeon while performing vidian nerve neurectomy and also the anatomical relationship of the facial nerve in temporal bone. The middle fossa approach involves a temporal craniotomy in cases of perineural spread of adenoid cystic carcinomas hence these anatomical landmarks will serve as useful guide for the surgeons and radiologists. -
Development of the Rat Superior Cervical Ganglion: Initial Stages of Synapse Formation’
0270.6474/0503-0697$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5. No. 3, pp. 697-704 Printed in U.S.A. March 1985 Development of the Rat Superior Cervical Ganglion: Initial Stages of Synapse Formation’ ERIC RUBIN* Department of Physiology and Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 Abstract some aspects of synaptic organization through the prenatal period. Some of these results have been briefly reported (Rubin, 1982). Synapse formation in the rat superior cervical ganglion has been investigated electrophysiologically and at the ultra- Materials and Methods structural level. Preganglionic axons first enter the superior The procedures for obtaining and isolating fetal rats have been described cervical ganglion between days 12 and 13 of gestation (El2 (Rubin 1985a, b). As in the previous papers, the day of conception is counted to E13), and on El3 a postganglionic response can be evoked as embryonic day zero (EO), and the first postnatal day is termed PO. by preganglionic stimulation. The susceptibility of this re- flectrophysiology. In isolated fetuses, the right superior cervical ganglion sponse to fatigue and to blocking agents indicates that it is was exposed, along with the internal carotid nerve and the cervical sympa- mediated by cholinergic synapses. On E14, the overall thetic trunk (see Rubin, 1985a). The dissection was carried out at room strength of ganglionic innervation arising from different temperature in a standard Ringer’s solution (pH 7.2) of the following com- spinal segments already varies in a pattern resembling that position (in millimolar concentration): NaCI, 137.0; KCI, 4.0; MgCIP, 1.0; found in maturity. -
The Axatomy of the Autonomic Nervous System in the Dog1
THE AXATOMY OF THE AUTONOMIC NERVOUS SYSTEM IN THE DOG1 NICHOLAS JAMES AIIZERES Ucpartnitiit of Aiintoiiry, Cnzvemtty of Xtclizgaii Scliool of ;2/cdicmc. Ann Arbor, Mtclatgan ELEVEN FIGURES INTRODUCTTOX I<iiowledgc clerivccl from cmprimeiits on tlie clog has not infrequently been applied to man without considering dif- fcmnccs in aiiatoniy. This is c~spcciallytrue of the autonomic nervous systeni, oiily parts of which have b:mi described in the adult clog. The cardiac ncli'vcs \\'ere described by Sc1iuran.- Iew ( '27) ant1 Soniclez ( '39), the gcw~alplan of the abrloniirial ancl sacral regions by Trumble ( '34), tlic lunibosacral trunk by Alehler, Fisclier and Alexander ( '52), the vagi lsy Hilsa- beck aid Hill ( '50) and BIcC'rca and D'hrcy ( '%), ant1 the urogenital plexuses by Schal~adasch( '26) aiicl Ncdowar ( '2.3. The present study was undertaken to fill gaps in previous clescriptions ancl to present an over-all view of the autonomic iierrous system in the (log, esclutliiig the cephalic region. In the pi-c~seiitiiivcstigation the XI< terminology has been used iiistpad of the usual RNA familiar in human anatomy loccause tlic study was based on the clog. Sincc a dog is a pronograde niamnial the terms cranial aiid caudal seeni nior(t appropriat r tliaii the ESA terms superior and inferior. Tiiis paper is n condensation of a clissei t:ition snbniittctl in paytial fulfillmc.~it of tlrc rcqiiireiiieuts for the drgrce of Doctor of Pliilosopliy in the University of Rlicliigaii. I wish to tlimik Dr. It. T. Wootlhuine for Ills interest and aclriec. For the supply of nlatciial tlie author vihlies to e\-pr('\s his appreciatioir to mcmbc~is of the 1)ep:irtiiiciits of P1iTsiolog.y :iiiil PIiar~u:~cologrof tlic Viiirersity of hliclrigan. -
The Recurrent Laryngeal Cardiac Nerve in Fetuses
Int. J. Morphol., 32(2):415-419, 2014. The Recurrent Laryngeal Cardiac Nerve in Fetuses El Nervio Laríngeo Recurrente Cardiaco en Fetos B. Z. De Gama*; L. Lazarus* & K. S. Satyapal* DE GAMA, B. Z.; LAZARUS, L. & SATYAPAL, K. S. The recurrent laryngeal cardiac nerve in fetuses. Int. J. Morphol., 32(2):415- 419, 2014. SUMMARY: The recurrent laryngeal nerve has been reported to supply cardiac branches to the cardiac plexus. A review of anatomical literature on the existing term used to describe these branches revealed that varying interpretations and descriptions exist among various authors. Therefore, this study aimed to investigate the origin and incidence of branches from the recurrent laryngeal nerves to the cardiac plexus and their connections with sympathetic cardiac nerves. The sample comprised 40 cadaveric fetuses (n=80) (gestational ages: 16-30 weeks). The recurrent laryngeal cardiac nerve was described as the cardiac branch that originated directly from the recurrent laryngeal nerve and reached the superficial or deep parts of the cardiac plexus. This study found the recurrent laryngeal cardiac nerve in 76% of the cases contributing direct and indirect branches in 75% and 25% of the cases, respectively. This study recorded only two (2%) of these branches contributing to the superficial cardiac plexus while the rest (74%) of these branches contributed to the deep cardiac plexuses. The remaining 24% had no contributions from the recurrent laryngeal nerve to either the superficial or deep part of the cardiac plexus. The most common point of origin for the recurrent laryngeal cardiac nerve was at the lower distal part in 59% of the specimens. -
Specific Targeting of Ganglion Cell Sprouts Provides an Additional
The Journal of Neuroscience, October 1, 1998, 18(19):7987–7995 Specific Targeting of Ganglion Cell Sprouts Provides an Additional Mechanism for Restoring Peripheral Motor Circuits in Pelvic Ganglia after Spinal Nerve Damage Mark E. Kepper and Janet R. Keast Department of Physiology and Pharmacology, The University of Queensland, St. Lucia, Queensland, 4072, Australia The pelvic ganglia contain both sympathetic and parasympa- which grow profusely within just a few days. These arise from thetic neurons and provide an interesting model in which to each of the main chemical classes of pelvic neurons but grow study the effects of a distributed spinal nerve lesion. Previous at different rates and have different distributions. Importantly, animal studies have suggested that after either lumbar or sacral some chemical classes of sprouts preferentially supply neurons nerve injury, some functional connections are restored between of dissimilar histochemistry, suggesting the presence of very preganglionic and postganglionic neurons. It has been pro- specific targeting mechanisms rather than random growth. posed that this is because of intact preganglionic axons sprout- These sprouts are transient, however, those formed after partial ing collaterals to supply denervated ganglion cells. However, decentralization appear to be maintained. Moreover, after le- this has never been demonstrated, and our study has investi- sion of either lumbar or sacral spinal nerves, many sprouts arise gated whether the ganglion cells themselves contribute to axo- from neurons with intact spinal connections and innervate neu- genesis and restoration of peripheral circuitry. We have moni- rons that have lost their preganglionic inputs. This provides a tored the growth of axons from pelvic ganglion cells after very different alternative mechanism to reestablish communi- lumbar or sacral nerve injury (partial decentralization), or a cation between preganglionic and postganglionic neurons.