A Genome-Wide Sirna Screen Reveals Diverse Cellular Processes and Pathways That Mediate Genomic Stability

Total Page:16

File Type:pdf, Size:1020Kb

A Genome-Wide Sirna Screen Reveals Diverse Cellular Processes and Pathways That Mediate Genomic Stability A GENOME-WIDE SIRNA SCREEN REVEALS DIVERSE CELLULAR PROCESSES AND PATHWAYS THAT MEDIATE GENOMIC STABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CHEMICAL AND SYSTEMS BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Renee Darlene Paulsen May 2010 © 2010 by Renee Darlene Paulsen. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/zx436yn9136 Includes supplemental files: 1. Table S1. H2AX Signal and Cell Cycle Distribution for Genome (NT dataset). The following list shows the percentage ... (Paulsen_ST1.xlsx) 2. Table S2. List of Genes with Significant H2AX Values (NT dataset). The following list shows genes that had a H2AX s... (Paulsen_ST2.xlsx) 3. Table S3. Genes that Caused Extensive Cell Death. The following is a list of genes that when knocked down lead to w... (Paulsen_ST3.xlsx) 4. Table S4. Categories of Enrichment Determined by DAVID Bioinformatic Database and Ingenuity Pathway Analysis. The g... (Paulsen_ST4.xlsx) 5. Table S5. List of Deconvoluted Genes. The following is a list of genes for which we individually tested four differ... (Paulsen_ST5.xlsx) 6. Table S6. Individual Components of Gene Modules and Networks Enriched Amongst Screen Hits. The individual modules i... (Paulsen_ST6.xlsx) 7. Table S7: 53BP1 Staining Results and Table S8: Phospho-H3 Recovery Assay Results. (Paulsen_ST7_ST8.xlsx) 8. Table S9. Table of Genes Identified in This Screen and Other Screens. Hits from complimentary siRNA screens were co... (Paulsen_ST9.xlsx) 9. Table S10: H2AX Values From Retesting mRNA Processing Genes and the Effect of RNAseH Treatment, Table S11: mRNA Pro... (Paulsen_ST10_ST11_ST12.xlsx) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Karlene Cimprich, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Tobias Meyer I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Clifford Wang I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Joanna Wysocka Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii ABSTRACT Genome instability has long been known to be a hallmark of cancerous cells, but the cellular causes and consequences of such instability are still not fully understood. Mutations, translocations, DNA rearrangements, as well as chromosomal loss can all result in the loss of genomic integrity. To prevent the disruption of cellular homeostasis due to DNA damage accumulation, cells contain pathways to sense and respond to DNA damage including cell cycle checkpoints and numerous DNA repair processes, collectively known as the DNA damage response (DDR). Mutations in many of the genes involved in the DDR are linked to several diseases, including premature aging, neurodegeneration and cancer. These signaling pathways are especially critical during DNA replication when the DNA is unwound and vulnerable to processing. Here, the cell relies on the S-phase checkpoint to sense DNA damage at the sites of replication forks and to facilitate a number of downstream pathways to maintain genomic stability. These processes include blocking further origin firing, facilitating DNA repair, preventing cell cycle progression, and stabilizing stalled replication forks. Here, two genome-wide siRNA screens were employed to identify additional genes involved in genome stabilization by monitoring phosphorylation of the histone variant H2AX, an early mark of DNA damage. The first screen looked at H2AX phosphorylation that occurred simply by individual protein depletion, and the second screen used a low level of a replication inhibitor, aphidicolin, to specifically identify genes that were needed to prevent DNA damage during S-phase, potentially due to the loss of replication fork stabilization mechanisms. While the results from the second screen are still undergoing further characterization, we did discover hundreds of genes whose down-regulation led to elevated levels of H2AX phosphorylation (γH2AX) in the absence of any external stress. From this gene set, we identified many gene networks that were significantly enriched amongst our screening hits as well as several intriguing individual genes that were chosen for follow up study. iv From our screen, we found a widespread role for mRNA processing factors, predominantly mRNA splicing proteins, in preventing γH2AX, with the loss of nearly ninety mRNA processing genes capable of inducing DNA damage. Additionally, we discovered that in some cases, loss of proper mRNA processing caused damage due to aberrant RNA-DNA structure formation, along with defects in the replication progression. Furthermore, we connected increased γH2AX levels to the neurological disorder, Charcot-Marie-Tooth (CMT) syndrome, and we found a role for several CMT proteins in the DNA damage response with loss causing DNA damage sensitivities and DNA repair deficiencies. Finally, the genome-wide siRNA screen also lead to the discovery of the histone methyltransferase PR-Set7/Set8 as a novel mediator of genomic integrity. We demonstrated that Set8 has multi-faceted roles to facilitate replication progression and prevent DNA damage formation. Cumulatively, this thesis highlights that preservation of genome stability is mediated by a larger network of biological processes than previously appreciated, and understanding all mechanisms in place to prevent DNA damage should help elucidate how cells prevent mutations, translocations, and ultimately, oncogenic transformation. v ACKNOWLEDGMENTS I am deeply grateful for all of the faculty, family, and friends who have helped during the course of my PhD. First and foremost, thank you to my advisor, Karlene Cimprich for guiding me throughout the process, and serving as a good mentor and role model both in science and life. Thank you also to my committee members, Tobias Meyer, Joanna Wysocka, Cliff Wang, and Teresa Wang for their helpful suggestions and useful criticism along the way. Many thanks also go to the Cimprich lab members both past and present. Thanks to Sharon Barr and Ryan Bombargden for getting me up and running in the lab. Thanks to Jia-Ren Lin, Michelle Zeman, Claudia Choi, and Anna Guan for being excellent grad student lab mates along the way. Also thanks to Deena Soni for all of the help with the siRNA screen and Robert Driscoll, Anja Duursma, Julie Sollier, Thomas Wechsler, and Andrew Kile for all of the good ideas and fresh enthusiasm you have brought to the lab. A special thanks also to M.C. Yee who is simply an inspiration in so many ways. Thank you for all of your help scientifically as well as mentoring and family support. I would not have made it through graduate school without you, and I greatly appreciate all you have done for me and my family. A special thanks also to Chris Van, Debbie Chang, and Angie Hahn for all of the advice, commiseration sessions, support, food, and friendship. Graduate school wouldn’t have been nearly as much fun without you all of you. Outside of the Cimprich lab thank you to Roy Wollman, Annette Salmeen, Phil Vitorino, Lin Gan, David Solow-Cordero, and Jason Wu for all of your help with the genome wide screen, analysis, and interpretation. You made it all possible and thankfully make sense. Also a special thanks to Blueshift biotechnologies, now part of MDS analytical technologies for letting us invade with an idea, and leave with beautiful scientific results. Jayne Hesley, Steve Miller, and Evan Cromwell, we would still be screening the genome if it were not for you and your brilliant instrumentation. Thank you also to my friends in the CSB department, Emily Eggler, Andy Poon, Paul Rack, Mark Sellmyer, and the many others who have come and gone along the way. vi Thank you also to my family for supporting me throughout this process. Thanks to my parents Stanley and Nancy Baack for instilling in me the values to succeed in life. You have always been a constant source of support. Thank you to my sister, Jennifer Baack, who has patiently proof read countless manuscripts, and papers. Thank you also to my extended family, Wes and Pat Paulsen. I am so blessed to have two sets of supporting parents in my life, and I am very grateful to Pat for all of her help during this process. Finally, thank you to my husband, my best friend, and the love of my life TJ Paulsen. You have stood by my side, listened to my complaints, been a constant source of reason, stolen me from the bench when appropriate, and made me a better person by knowing you. You and Meagan have been the joy of my life and I cannot tell you how thankful I am for your love, comfort, and support
Recommended publications
  • Genetic Variants Contribute to Gene Expression Variability in Humans
    INVESTIGATION Genetic Variants Contribute to Gene Expression Variability in Humans Amanda M. Hulse* and James J. Cai*,†,1 *Interdisciplinary Program in Genetics and †Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458 ABSTRACT Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify 300 trans-acting evQTL between .13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied.
    [Show full text]
  • Ailanthone Inhibits Non-Small Cell Lung Cancer Cell Growth Through Repressing DNA Replication Via Downregulating RPA1
    FULL PAPER British Journal of Cancer (2017) 117, 1621–1630 | doi: 10.1038/bjc.2017.319 Keywords: ailanthone; non-small cell lung cancer; DNA replication; RPA1; Chinese medicine Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1 Zhongya Ni1, Chao Yao1, Xiaowen Zhu1, Chenyuan Gong1, Zihang Xu2, Lixin Wang3, Suyun Li4, Chunpu Zou2 and Shiguo Zhu*,1,3 1Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 2Department of Internal Classic of Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 3Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China and 4Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China Background: The identification of bioactive compounds from Chinese medicine plays a crucial role in the development of novel reagents against non-small cell lung cancer (NSCLC). Methods: High throughput screening assay and analyses of cell growth, cell cycle, apoptosis, cDNA microarray, BrdU incorporation and gene expression were performed. Results: Ailanthone (Aila) suppressed NSCLC cell growth and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously xenografted and orthotopic lung tumour models, leading to prolonged survival of tumour-bearing mice. Moreover, Aila induced cell cycle arrest in a dose-independent manner but did not induce apoptosis in all NSCLC cells.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PQBP1, a Factor Linked to Intellectual Disability, Affects Alternative Splicing Associated with Neurite Outgrowth
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth Qingqing Wang,1 Michael J. Moore,2 Guillaume Adelmant,3,4,5 Jarrod A. Marto,3,4,5 and Pamela A. Silver1,6,7 1Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; 2Laboratory of Molecular Neuro- Oncology, The Rockefeller University, New York, New York 10065, USA; 3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; 4Blais Proteomics Center, 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 6Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Clipped Histone H3 Is Integrated Into Nucleosomes of DNA Replication
    Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite Plasmodium falciparum Abril Marcela Herrera-solorio, Shruthi Sridhar Vembar, Cameron Ross Macpherson, Daniela Lozano-amado, Gabriela Romero Meza, Beatriz Xoconostle-cazares, Rafael Miyazawa Martins, Patty Chen, Miguel Vargas, Artur Scherf, et al. To cite this version: Abril Marcela Herrera-solorio, Shruthi Sridhar Vembar, Cameron Ross Macpherson, Daniela Lozano- amado, Gabriela Romero Meza, et al.. Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite Plasmodium falciparum. EMBO Reports, EMBO Press, 2019, 20 (4), pp.e46331. 10.15252/embr.201846331. hal-02321832 HAL Id: hal-02321832 https://hal.archives-ouvertes.fr/hal-02321832 Submitted on 9 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Scientific Report Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite
    [Show full text]
  • POLR2I Antibody (Monoclonal) (M01) Mouse Monoclonal Antibody Raised Against a Partial Recombinant POLR2I
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 POLR2I Antibody (monoclonal) (M01) Mouse monoclonal antibody raised against a partial recombinant POLR2I. Catalog # AT3377a Specification POLR2I Antibody (monoclonal) (M01) - Product Information Application WB, E Primary Accession P36954 Other Accession BC017112 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG1 Kappa Calculated MW 14523 POLR2I Antibody (monoclonal) (M01) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 5438 Immunogen (36.74 KDa) . Other Names DNA-directed RNA polymerase II subunit RPB9, RNA polymerase II subunit B9, DNA-directed RNA polymerase II subunit I, RNA polymerase II 145 kDa subunit, RPB145, POLR2I Target/Specificity POLR2I (AAH17112, 26 a.a. ~ 125 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Detection limit for recombinant GST tagged Dilution POLR2I is approximately 0.03ng/ml as a WB~~1:500~1000 capture antibody. Format Clear, colorless solution in phosphate POLR2I Antibody (monoclonal) (M01) - buffered saline, pH 7.2 . Background Storage This gene encodes a subunit of RNA Store at -20°C or lower. Aliquot to avoid polymerase II, the polymerase responsible for repeated freezing and thawing. synthesizing messenger RNA in eukaryotes. This subunit, in combination with two other Precautions polymerase subunits, forms the DNA binding POLR2I Antibody (monoclonal) (M01) is for domain of the polymerase, a groove in which research use only and not for use in the DNA template is transcribed into RNA. The diagnostic or therapeutic procedures. product of this gene has two zinc finger motifs with conserved cysteines and the subunit does possess zinc binding activity.
    [Show full text]
  • Anti-RPA1 Monoclonal Antibody, Clone 3I21 (DCABH-3680) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-RPA1 Monoclonal antibody, clone 3I21 (DCABH-3680) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse monoclonal to RPA70 Antigen Description Plays an essential role in several cellular processes in DNA metabolism including replication, recombination and DNA repair. Binds and subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from reannealing.Functions as component of the alternative replication protein A complex (aRPA). aRPA binds single-stranded DNA and probably plays a role in DNA repair; it does not support chromosomal DNA replication and cell cycle progression through S-phase. In vitro, aRPA cannot promote efficient priming by DNA polymerase alpha but supports DNA polymerase delta synthesis in the presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange. Immunogen Purified Human RPA70 protein Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone 3I21 Purity Protein G purified Conjugate Unconjugated Applications WB, IP Positive Control HeLa cells Format Liquid Size 500 μl Buffer pH: 7.40; Preservative: 0.09% Sodium azide; Constituents: 99% PBS, 0.02% BSA Preservative 0.09% Sodium Azide Storage Store at +4°C short term (1-2 weeks). Store at -20°C or -80°C. Avoid freeze / thaw cycle. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics
    [Show full text]
  • Attachment PDF Icon
    Spectrum Name of Protein Count of Peptides Ratio (POL2RA/IgG control) POLR2A_228kdBand POLR2A DNA-directed RNA polymerase II subunit RPB1 197 NOT IN CONTROL IP POLR2A_228kdBand POLR2B DNA-directed RNA polymerase II subunit RPB2 146 NOT IN CONTROL IP POLR2A_228kdBand RPAP2 Isoform 1 of RNA polymerase II-associated protein 2 24 NOT IN CONTROL IP POLR2A_228kdBand POLR2G DNA-directed RNA polymerase II subunit RPB7 23 NOT IN CONTROL IP POLR2A_228kdBand POLR2H DNA-directed RNA polymerases I, II, and III subunit RPABC3 19 NOT IN CONTROL IP POLR2A_228kdBand POLR2C DNA-directed RNA polymerase II subunit RPB3 17 NOT IN CONTROL IP POLR2A_228kdBand POLR2J RPB11a protein 7 NOT IN CONTROL IP POLR2A_228kdBand POLR2E DNA-directed RNA polymerases I, II, and III subunit RPABC1 8 NOT IN CONTROL IP POLR2A_228kdBand POLR2I DNA-directed RNA polymerase II subunit RPB9 9 NOT IN CONTROL IP POLR2A_228kdBand ALMS1 ALMS1 3 NOT IN CONTROL IP POLR2A_228kdBand POLR2D DNA-directed RNA polymerase II subunit RPB4 6 NOT IN CONTROL IP POLR2A_228kdBand GRINL1A;Gcom1 Isoform 12 of Protein GRINL1A 6 NOT IN CONTROL IP POLR2A_228kdBand RECQL5 Isoform Beta of ATP-dependent DNA helicase Q5 3 NOT IN CONTROL IP POLR2A_228kdBand POLR2L DNA-directed RNA polymerases I, II, and III subunit RPABC5 5 NOT IN CONTROL IP POLR2A_228kdBand KRT6A Keratin, type II cytoskeletal 6A 3 NOT IN CONTROL IP POLR2A_228kdBand POLR2K DNA-directed RNA polymerases I, II, and III subunit RPABC4 2 NOT IN CONTROL IP POLR2A_228kdBand RFC4 Replication factor C subunit 4 1 NOT IN CONTROL IP POLR2A_228kdBand RFC2
    [Show full text]
  • A High Resolution Physical and RH Map of Pig Chromosome 6Q1.2 And
    A high resolution physical and RH map of pig chromosome 6q1.2 and comparative analysis with human chromosome 19q13.1 Flávia Martins-Wess, Denis Milan, Cord Drögemüller, Rodja Voβ-Nemitz, Bertram Brenig, Annie Robic, Martine Yerle, Tosso Leeb To cite this version: Flávia Martins-Wess, Denis Milan, Cord Drögemüller, Rodja Voβ-Nemitz, Bertram Brenig, et al.. A high resolution physical and RH map of pig chromosome 6q1.2 and comparative analysis with human chromosome 19q13.1. BMC Genomics, BioMed Central, 2003, 4, pp.435-444. 10.1186/1471-2164-4- 20. hal-02680244 HAL Id: hal-02680244 https://hal.inrae.fr/hal-02680244 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Genomics BioMed Central Research article Open Access A high resolution physical and RH map of pig chromosome 6q1.2 and comparative analysis with human chromosome 19q13.1 Flávia Martins-Wess1, Denis Milan*2, Cord Drögemüller1, Rodja Voβ- Nemitz1, Bertram Brenig3, Annie Robic2, Martine Yerle2 and Tosso Leeb*1 Address: 1Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany, 2Institut National de la Recherche Agronomique (INRA), Laboratoire de Génétique Cellulaire, BP27, 31326 Castanet Tolosan Cedex, France and 3Institute of Veterinary Medicine, University of Göttingen, Groner Landstr.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7092–7106 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7092–7106.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J. Ingham,1 Karen Colwill,1 Caley Howard,1 Sabine Dettwiler,2 Caesar S. H. Lim,1,3 Joanna Yu,1,3 Kadija Hersi,1 Judith Raaijmakers,1 Gerald Gish,1 Geraldine Mbamalu,1 Lorne Taylor,1 Benny Yeung,1 Galina Vassilovski,1 Manish Amin,1 Fu Chen,4 Liudmila Matskova,4 Go¨sta Winberg,4 Ingemar Ernberg,4 Rune Linding,1 Paul O’Donnell,1 Andrei Starostine,1 Walter Keller,2 Pavel Metalnikov,1Chris Stark,1 and Tony Pawson1,3* Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada1; Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada3; Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland2; and Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), SE-171 Stockholm, Sweden4 Received 8 April 2005/Returned for modification 5 May 2005/Accepted 22 May 2005 WW domains are protein modules that mediate protein-protein interactions through recognition of proline- rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskel- etal regulation.
    [Show full text]