Genetic Variants Contribute to Gene Expression Variability in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variants Contribute to Gene Expression Variability in Humans INVESTIGATION Genetic Variants Contribute to Gene Expression Variability in Humans Amanda M. Hulse* and James J. Cai*,†,1 *Interdisciplinary Program in Genetics and †Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458 ABSTRACT Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify 300 trans-acting evQTL between .13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. UANTITATIVE genetic analysis has long focused on de- level (i.e., expression QTL, eQTL) (Montgomery and Dermit- Qtecting genetic variants that affect organismal pheno- zakis 2011). The difference in mean gene expression and its types. This is often done by contrasting mean differences in genetic control have been extensively examined in humans phenotypes among genotypes. Despite increasing evidence (Stranger et al. 2005, 2007b; Choy et al. 2008; Montgomery across several species for genetic control of phenotypic var- et al. 2010; Pickrell et al. 2010).Thedifferenceinvarianceof iance (Ansel et al. 2008; Hill and Mulder 2010; Jimenez- gene expression (i.e., gene expression variability) is geneti- Gomez et al. 2011), variance differences in phenotypes have cally controlled and likely to be selectable (Raser and O’Shea been largely ignored. Recently, however, the fact that vari- 2005; Blake et al. 2006; Maheshri and O’Shea 2007; Cheung ance of phenotypes is genotype dependent has inspired the and Spielman 2009; Zhang et al. 2009). A small number of detection of genetic variants associated with phenotypic var- initial efforts have been made to quantify the difference in iability (Pare et al. 2010; Sudmant et al. 2010; Yang et al. gene expression variability (that is, variance of gene expres- 2012). sion) (Ho et al. 2008; Li et al. 2010a; Mar et al. 2011; Xu et al. When gene expression level is considered as a heritable, 2011b). Yet, little attention has been paid to the genetic con- quantitative trait, statistical associations between mean gene trol of gene expression variability in humans. expression and genotype can be established to identify those In the present study, we seek to discover genome-wide genomic loci associated with or linked to gene expression genetic variants (i.e., SNPs) associated with differences in the variance of gene expression among individuals. We adapt the Copyright © 2013 by the Genetics Society of America double generalized linear model (dglm) (Verbyla and Smyth doi: 10.1534/genetics.112.146779 Manuscript received September 13, 2012; accepted for publication October 31, 2012 1998) to test for the inequality of expression variances and Supporting information is available online at http://www.genetics.org/lookup/suppl/ measure the contribution of genetic variants to the expression doi:10.1534/genetics.112.146779/-/DC1. 1Corresponding author: Department of Veterinary Integrative Biosciences, Texas A&M heteroscedasticity. The model has been recently used to de- University, TAMU 4458, College Station, TX 77843. E-mail: [email protected] tect genetic loci controlling phenotypic variability in chicken Genetics, Vol. 193, 95–108 January 2013 95 F2 crosses (Ronnegard and Valdar 2011). A likelihood ratio Genotype data test (LRT) of the dglm method allows us to compare the fitof Human polymorphism data were obtained from the HapMap a “full model” and a “mean model.” The full model takes into project (International Hapmap Consortium 2007) and the account the contribution of genotype to both the mean and pilot phase of The 1000 Genomes (1000G) Project (The the variance of gene expression simultaneously, while the 1000 Genomes Project Consortium 2010). The HapMap mean model takes into account only the contribution of ge- data release 28 includes genotypes of 4 million SNPs notype to the mean, ignoring the contribution to the variance. merged from phases 1, 2, and 3 of the project (International Asignificant result of the LRT indicates the nonrandom asso- Hapmap Consortium 2007). HapMap samples are from four ciation between the genotypes and the variances of gene different populations: Yorubans from Ibadan, Nigeria (YRI), expression. Here we designate the genomic loci statistically individuals of European origin in Utah (CEU), Han Chinese associated with gene expression variability expression variabil- from Beijing (CHB), and Japanese from Tokyo (JPT). The ity QTL (evQTL). The results of our genome-wide scan for raw data from the pilot study of the 1000G project contains evQTL provide a glimpse into the abundance and distribution 15 million SNPs from a total of 179 samples also from the of expression variability controlling variants in the human four HapMap populations. From the HapMap data, we genome. Given that the variance of a quantitative trait is extracted genotypes of individuals whose gene expression likely to differ under the influence of genetic interactions data are included in the GSE6536 and GSE11582 data sets. (Pare et al. 2010; Ronnegard and Valdar 2011), our evQTL The HapMap CEU and YRI populations consist of 60 trios. detecting method may be used to help detect the interactions We removed the 60 child samples from trios and used the between genetic variants controlling gene expression. remaining 210 unrelated samples in our analysis. From the 1000G data, we extracted genotypes of 153 and 149 individuals whose gene expression data were available Methods in GSE6536 and GSE11582, respectively. The 1000G project Expression data data give a snapshot of human polymorphism at an unprece- dented scale and resolution. The released 1000G low-coverage Gene expression data from the studies of Stranger et al. data captures nearly all (95%) of the common polymor- (2007a) and Choy et al. (2008) were downloaded from phism in a relatively ascertainment-free manner (The 1000 the Gene Expression Omnibus (GEO) website with accession Genomes Project Consortium 2010). One disadvantage of nos. GSE6536 and GSE11582, respectively. The two data using the 1000G genotype data in our case was that the sets were designated GSE6536 and GSE11582 thereafter. sample size became smaller. In addition, genotypes of 59 In the two studies, the expression levels were measured in individuals were extracted from the HapMap release and lymphoblastoid cell lines (LCLs) derived from HapMap in- paired with expression data in the RNA-seq data set. dividuals using two different platforms: Illumina human The minor allele frequency (MAF) and F statistic for whole-genome expression array (WG-6 version 1) for st SNPs, and LD estimates between SNP pairs (R2 and D9) were GSE6536 (Stranger et al. 2007a,b) and Affymetrix human computed using Matlab functions in PGEToolbox (Cai 2008). genome U133A array for GSE11582 (Choy et al. 2008). The To eliminate low-frequency polymorphisms, we discarded downloaded data had been normalized by using quantile SNPs with MAFs ,10% in the YRI, CEU, and CHB/JPT pop- normalization across replicates of a single individual and ulations. To control for the effect of population stratification, then median normalized across all HapMap individuals. we excluded SNPs with F $0.2. We also excluded SNPs that The downloaded data sets included 16,992 genes (19,440 st were found to be deviated from the Hardy-Weinberg (HW) probes) and 13,012 genes (20,995 probes) in GSE6536 and equilibrium by using hweStrata, an exact stratified test across GSE11582 data sets, respectively, and 11,633 shared genes. populations (Schaid et al. 2006). The Sequence Alignment/Map (SAM) files of the RNA se- quencing (RNA-seq) data for 60 individuals of European Regression models origin in Utah (CEU) HapMap individuals from the study For each transcript-SNP pair, the association between gene of Montgomery et al. (2010) were downloaded at the website expression level and the genotype is assumed to be linear. http://jungle.unige.ch/rnaseq_CEU60.WeusedSAMMate The conventional linear regression model is (Xu et al. 2011a) to estimate the expression level using the number of reads per kilobase of transcript per million mapped ¼ m þ a þ e ; e ð ; s2Þ; yi gi i i N 0 (1) reads (RPKM)
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T
    www.nature.com/scientificreports OPEN Mechanical forces induce an asthma gene signature in healthy airway epithelial cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T. Kho4, Kelan Tantisira1, Marc Santolini 1,5, Feixiong Cheng6,7,8, Jennifer A. Mitchel3, Maureen McGill3, Michael J. O’Sullivan3, Margherita De Marzio1,3, Amitabh Sharma1, Scott H. Randell9, Jefrey M. Drazen3, Jefrey J. Fredberg3 & Scott T. Weiss1,3* Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufcient to induce infammatory, late repair, and fbrotic pathways. Remarkably, this molecular profle of non-asthmatic cells after compression recapitulated the profle of asthmatic cells before compression. Together, these results show that even in the absence of any infammatory stimulus, mechanical compression alone is sufcient to induce an asthma-like molecular signature. Bronchial epithelial cells (BECs) form a physical barrier that protects pulmonary airways from inhaled irritants and invading pathogens1,2. Moreover, environmental stimuli such as allergens, pollutants and viruses can induce constriction of the airways3 and thereby expose the bronchial epithelium to compressive mechanical stress. In BECs, this compressive stress induces structural, biophysical, as well as molecular changes4,5, that interact with nearby mesenchyme6 to cause epithelial layer unjamming1, shedding of soluble factors, production of matrix proteins, and activation matrix modifying enzymes, which then act to coordinate infammatory and remodeling processes4,7–10.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • PQBP1, a Factor Linked to Intellectual Disability, Affects Alternative Splicing Associated with Neurite Outgrowth
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth Qingqing Wang,1 Michael J. Moore,2 Guillaume Adelmant,3,4,5 Jarrod A. Marto,3,4,5 and Pamela A. Silver1,6,7 1Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; 2Laboratory of Molecular Neuro- Oncology, The Rockefeller University, New York, New York 10065, USA; 3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; 4Blais Proteomics Center, 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 6Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Usbiological Datasheet
    PCDHA2, NT (PCDHA2, Protocadherin alpha-2) (APC) Catalog number 039731-APC Supplier United States Biological This gene is a member of the protocadherin alpha gene cluster, one of three related gene clusters tandemly linked on chromosome five that demonstrate an unusual genomic organization similar to that of B-cell and T-cell receptor gene clusters. The alpha gene cluster is composed of 15 cadherin superfamily genes related to the mouse CNR genes and consists of 13 highly similar and 2 more distantly related coding sequences. The tandem array of 15 N-terminal exons, or variable exons, are followed by downstream C-terminal exons, or constant exons, which are shared by all genes in the cluster. The large, uninterrupted N-terminal exons each encode six cadherin ectodomains while the C- terminal exons encode the cytoplasmic domain. These neural cadherin-like cell adhesion proteins are integral plasma membrane proteins that most likely play a critical role in the establishment and function of specific cell-cell connections in the brain. Alternative splicing has been observed and additional variants have been suggested but their full-length nature has yet to be determined. Applications Suitable for use in Western Blot, FLISA Recommended Dilution FLISA: 1:1,000 Western Blot: 1:100-500 Storage and Stability Store product at 4°C in the dark. DO NOT FREEZE! Stable at 4°C for 12 months after receipt as an undiluted liquid. Dilute required amount only prior to immediate use. Further dilutions can be made in assay buffer. Caution: APC conjugates are sensitive to light. For maximum recovery of product, centrifuge the original vial prior to removing the cap.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • The Conserved DNMT1-Dependent Methylation Regions in Human Cells
    Freeman et al. Epigenetics & Chromatin (2020) 13:17 https://doi.org/10.1186/s13072-020-00338-8 Epigenetics & Chromatin RESEARCH Open Access The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure Dana M. Freeman1 , Dan Lou1, Yanqiang Li1, Suzanne N. Martos1 and Zhibin Wang1,2,3* Abstract Background: Allele-specifc DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The signifcance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-tradi- tional ASMs are sensitive to exposures in association with human disease. Results: We frst explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal develop- ment and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identifed regions were diferentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegenera- tion.
    [Show full text]
  • WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7092–7106 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7092–7106.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J. Ingham,1 Karen Colwill,1 Caley Howard,1 Sabine Dettwiler,2 Caesar S. H. Lim,1,3 Joanna Yu,1,3 Kadija Hersi,1 Judith Raaijmakers,1 Gerald Gish,1 Geraldine Mbamalu,1 Lorne Taylor,1 Benny Yeung,1 Galina Vassilovski,1 Manish Amin,1 Fu Chen,4 Liudmila Matskova,4 Go¨sta Winberg,4 Ingemar Ernberg,4 Rune Linding,1 Paul O’Donnell,1 Andrei Starostine,1 Walter Keller,2 Pavel Metalnikov,1Chris Stark,1 and Tony Pawson1,3* Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada1; Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada3; Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland2; and Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), SE-171 Stockholm, Sweden4 Received 8 April 2005/Returned for modification 5 May 2005/Accepted 22 May 2005 WW domains are protein modules that mediate protein-protein interactions through recognition of proline- rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskel- etal regulation.
    [Show full text]
  • Protein-Protein Interaction Network Alignment and Evolution
    Protein-Protein Interaction Network Alignment and Evolution by Brian Man-Kin Law A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Computer Science University of Toronto © Copyright by Brian Law 2019 Protein-Protein Interaction Network Alignment and Evolution Brian Law Doctor of Philosophy Computer Science University of Toronto 2019 Abstract Network alignment is an emerging analysis method enabled by the rapid large-scale collection of protein-protein interaction data for many different species. As sequence alignment did for gene evolution, network alignment will hopefully provide new insights into network evolution and serve as a new bioinformatic tool for making biological inferences across species. Using new SH3 binding data from Saccharomyces cerevisiae , Caenorhabditis elegans , and Homo sapiens , I construct new interface-interaction networks and devise a new network alignment method for these networks. With appropriate parameterization, this method is highly successful at generating alignments that reflect known protein orthology information and contain high network topology overlap. However, close examination of the optimal parameterization reveals a heavy reliance on protein sequence similarity and fungibility of other data features, including network topology data, an observation that may also pertain to protein-protein interaction network alignment. Closer examination of interactomic data, along with established orthology data, reveals that protein-protein interaction conservation is quite low across multiple species, suggesting that the high network topology overlap achieved by contemporary network aligners is ill-advised if biological relevance of results is desired. Further consideration of gene duplication and protein ii binding sites reveal additional PPI evolution phenomena further reducing the network topology overlap expected in network alignments, casting doubt on the utility of network alignment metrics solely based on network topology.
    [Show full text]