Identification of Proteins Involved in the Maintenance of Genome Stability
Total Page:16
File Type:pdf, Size:1020Kb
Identification of Proteins Involved in the Maintenance of Genome Stability by Edith Hang Yu Cheng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto ©Copyright by Edith Cheng2015 Identification of Proteins Involved in the Maintenance of Genome Stability Edith Cheng Doctor of Philosophy Department of Biochemistry University of Toronto 2015 Abstract Aberrant changes to the genome structure underlie numerous human diseases such as cancers. The functional characterization ofgenesand proteins that maintain chromosome stability will be important in understanding disease etiology and developing therapeutics. I took a multi-faceted approach to identify and characterize genes involved in the maintenance of genome stability. As biological pathways involved in genome maintenance are highly conserved in evolution, results from model organisms can greatly facilitate functional discovery in humans. In S. cerevisiae, I identified 47 essential gene depletions with elevated levels of spontaneous DNA damage foci and 92 depletions that caused elevated levels of chromosome rearrangements. Of these, a core subset of 15 DNA replication genes demonstrated both phenotypes when depleted. Analysis of rearrangement breakpoints revealed enrichment at yeast fragile sites, Ty retrotransposons, early origins of replication and replication termination sites. Together, thishighlighted the integral role of DNA replicationin genome maintenance. In light of my findings in S. cerevisiae, I identified a list of 153 human proteins that interact with the nascentDNA at replication forks, using a DNA pull down strategy (iPOND) in human cell lines. As a complementary approach for identifying human proteins involved in genome ii maintenance, I usedthe BioID techniqueto discernin vivo proteins proximal to the human BLM- TOP3A-RMI1-RMI2 genome stability complex, which has an emerging role in DNA replication progression. I uncovered45proximal proteins to the wildtype complex and catalogued the gains and losses of proximal proteins following the expression of three RMI1 mutants and in conditions of DNA replication stress. Altogether, I used a multi-faceted approach to identify a replication-enriched dataset of genes and proteins that collectively safeguard the genome from mutations, which will be invaluable for functional characterization studies in the future. iii Acknowledgements I would like to thank my supervisor, Grant Brown, for his support and guidance, and for the opportunity to work in his lab. I would also like to thank my committee members, Brigitte Lavoie and Igor Stagljar for their advice and encouragement throughout the years. I would like to thank the past members of the Brown lab, especially Jay Yang and Jessica Vaisica for their contribution to my projects. A special thanks goes tothe present members of the Brown Lab for their helpful discussions and for their friendship. Finally, I would like to thank my friends, my grandmother, my sister and my parentsfor their constant encouragement. iv List of Abbreviations AML Acute Myeloid Leukemia BTRR BLM-TOP3A-RMI1-RMI2 BIR Break-Induced Replication CMG Cdc45-MCM-GINS CIN Chromosome Instability CML Chronic Myelogenous Leukemia CFS Common Fragile Site CGH Comparative Genome Hybridization CHEF Contour-clamped Homogeneous Electric Field CDK Cyclin Dependent Kinase D-loop Displacement-loop dHJ double Holliday Junction DSBR Double-Strand Break Repair DSB Double-Stranded Break dsDNA double-stranded DNA FACT complex “Facilitates chromatin transcription” histone chaperone complex GO Gene Ontology GINS Go-Ichi-Ni-San GCR Gross Chromosome Rearrangements HR Homologous Recombination HU Hydroxyurea iPOND Identification of Proteins on Nascent DNA LFQ Label Free Quantification LTR Long Terminal Repeats LOH Loss of Heterozygousity MCM Mini Chromosome Maintenance MDS Myelodysplastic Syndrome NCC Nascent Chromatin Capture NHEJ Non-Homologous End Joining ORC Origin Recognition Complex BioID Proximity-dependent Biotin Identification RPA Replication Protein A RSZ Replication Slow Zones RPC Replisome Progression Complex RBP RNA binding proteins SGD Saccharomyces Genome Database SAINT Significance Analysis of INTeractome SNP Single Nucleotide Polymorphism SSA Single Strand Annealing ssDNA single-stranded DNA SCE Sister Chromatid Exchange SDSA Synthesis-Dependent Strand-Annealing Tet allele Tetracycline-regulated promoter allele UFB Ultra-fine DNA Bridge v Table of Contents ACKNOWLEDGMENTS ........................................................................................................................ IV LIST OF ABBREVIATIONS .................................................................................................................... V TABLE OF CONTENTS ......................................................................................................................... VI LIST OF FIGURES .................................................................................................................................... X LIST OF TABLES ................................................................................................................................... XII LIST OF APPENDICES ....................................................................................................................... XIII CHAPTER 1 INTRODUCTION ................................................................................................................ 1 1.1 GENOME INSTABILITY ..................................................................................................................... 2 1.2 DNA REPLICATION .......................................................................................................................... 4 1.2.1 Replication initiation ................................................................................................................ 4 1.2.2 Replication elongation and the replisome ................................................................................ 5 1.3 IMPEDIMENTS TO THE DNA REPLICATION FORK ............................................................................. 7 1.3.1 Genotoxic Stress ....................................................................................................................... 7 1.3.2 Protein-DNA obstacles ............................................................................................................. 8 1.3.3 DNA topology and unusual DNA structures ............................................................................. 8 1.3.4 Chromosome fragile sites ......................................................................................................... 9 1.4 CELLULAR RESPONSE TO STALLED DNA REPLICATION FORKS ..................................................... 10 1.5 CELLULAR RESPONSE TO DSB FORMATION .................................................................................. 13 1.6 MECHANISMS OF DOUBLE-STRANDED BREAK REPAIR ................................................................... 14 1.6.1 Non-homologous end joining (NHEJ) .................................................................................... 15 1.6.2 Homologous Recombination (HR).......................................................................................... 16 1.7 BLM-TOP3A-RMI1-RMI2 GENOME MAINTENANCE COMPLEX ................................................... 18 1.7.1 The Bloom syndrome protein (BLM) ...................................................................................... 18 1.7.2 BLM-TOP3A-RMI1-RMI2 (BTRR) core complex .................................................................. 18 1.7.3 BTRR involvement in higher order multi-complex structures ................................................ 19 1.7.4 Role of BTRR in homologous recombination and double Holliday junction dissolution ....... 20 1.7.5 BTRR in DNA replication progression ................................................................................... 21 1.7.6 BTRR at perturbed DNA replication forks ............................................................................. 22 1.7.7 BTRR in maintenance of common fragile site stability .......................................................... 23 1.8 RATIONALE .................................................................................................................................... 24 vi CHAPTER 2 GENOME REARRANGEMENTS CAUSED BY DEPLETION OF ESSENTIAL DNA REPLICATION PROTEINS IN SACCHAROMYCES CEREVISIAE. ...................................... 25 2.1 SUMMARY ...................................................................................................................................... 26 2.2 INTRODUCTION .............................................................................................................................. 26 2.3 RESULTS ........................................................................................................................................ 28 2.3.1 Depletion of essential gene products causes spontaneous DNA damage ............................... 28 2.3.2 Depletion of essential gene products causes chromosome loss and rearrangement .............. 30 2.3.3 Chromosome III rearrangements in essential genome stability mutants ............................... 33 2.3.4 Essential gene product depletion causes genome rearrangements with boundaries at Ty retrotransposons ................................................................................................................................