Hemiptera) Infesting Olive Trees at Giza Governorate with Emphasis on Population Dynamics of the Soft Brown Scale, Saissetia Coffeae (Hemiptera: Coccidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
Distribution Records of Aphids (Hemiptera: Phylloxeroidea, Aphidoidea) Associated with Main Forest-Forming Trees in Northern Europe
© Entomologica Fennica. 5 December 2012 Distribution records of aphids (Hemiptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe Andrey V. Stekolshchikov & Mikhail V. Kozlov Stekolshchikov, A. V.& Kozlov, M. V.2012: Distribution records of aphids (He- miptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe. — Entomol. Fennica 23: 206–214. We report records of 25 species of aphids collected from four species of woody plants (Pinus sylvestris, Picea abies, Betula pubescens and B. pendula)at50 study sites in Northern Europe, located from 59° to 70° N and from 10° to 60° E. Critical evaluation of earlier publications demonstrated that in spite of the obvi- ous limitations of our survey, the obtained information substantially contributed to the knowledge of the distribution of aphids in North European Russia, includ- ing Murmansk oblast (103 species recorded to date), Republic of Karelia (58 spe- cies), Arkhangelsk oblast (37 species), Vologda oblast (17 species) and Republic of Komi (29 species). We confirm the occurrence of Cinara nigritergi in South- ern Karelia; Pineus cembrae, Cinara pilosa and Monaphis antennata are for the first time recorded in Norway. A. V.Stekolshchikov, Zoological Institute, Russian Academy of Sciences, Univer- sitetskaya nab. 1, St. Petersburg 199034, Russia; E-mail: [email protected] M. V. Kozlov, Section of Ecology, University of Turku, FI-20014 Turku, Finland; E-mail: [email protected] Received 2 February 2012, accepted 5 April 2012 1. Introduction cades (e.g., Albrecht 2012), no comparable data (with rare exceptions) exist for the northern parts Species distributions and, consequently, spatial of the European Russia. -
Macedonian Journal of Ecology and Environment Diversity of Invertebrates in the Republic of Macedonia
Macedonian Journal of Ecology and Environment Vol. 17, issue 1 pp. 5-44 Skopje (2015) ISSN 1857 - 8330 Original scientific paper Available online at www.mjee.org.mk Diversity of invertebrates in the Republic of Macedonia Диверзитет на безрбетниците во Република Македонија 1,2, * 1,2 3 4 Slavčo HRISTOVSKI , Valentina SLAVEVSKA-STAMENKOVIĆ , Nikola HRISTOVSKI , Kiril ARSOVSKI , 5 6 6 7 8 Rostislav BEKCHIEV , Dragan CHOBANOV , Ivaylo DEDOV , Dušan DEVETAK , Ivo KARAMAN , Despina 2 9 6 2 10 KITANOVA , Marjan KOMNENOV , Toshko LJUBOMIROV , Dime MELOVSKI , Vladimir PEŠIĆ , Nikolay 5 SIMOV 1 Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia 2 Macedonian Ecological Society, Vladimir Nazor 10, 1000 Skopje, Macedonia 3 Faculty of Biotechnology, St. Kliment Ohridski University, 7000 Bitola, Macedonia 4 Biology Students' Research Society, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia 5 National Museum of Natural History, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria 6 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria 7 Department of Biology, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia 8 Department of Biology and Ecology, Faculty of Sciences, Trg D. Obradovića 2, 21000 Novi Sad, Serbia 9 Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece 10 Department of Biology, University of Montenegro, 81000 Podgorica, Montenegro The assessment of the diversity of invertebrates in Macedonia was based on previous assess- ments and analyses of new published data in the period 2003-2013 (after the first country study on biodiversity). -
Data Sheets on Quarantine Pests
Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Aonidiella citrina IDENTITY Name: Aonidiella citrina (Coquillett) Synonyms: Aspidiotus citrinus Coquillett Chrysomphalus aurantii citrinus (Coquillett) Taxonomic position: Insecta: Hemiptera: Homoptera: Diaspididae Common names: Yellow scale (English) Cochenille jaune (French) Escama amarilla de los cítricos (Spanish) Notes on taxonomy and nomenclature: The original description by Coquillett is inadequate and simply refers to 'the yellow scale' on orange (Nel, 1933). A. citrina is morphologically very similar to the Californian red scale, Aonidiella aurantii (Maskell), and was considered to be a variety until Nel (1933) raised it to specific level based on a comparative study of their ecology, biology and morphology. Bayer computer code: AONDCI EU Annex designation: II/A1 HOSTS A. citrina is polyphagous attacking plant species belonging to more than 50 genera in 32 families. The main hosts of economic importance are Citrus spp., especially oranges (C. sinensis), but the insect is also recorded incidentally on a wide range of ornamentals and some fruit crops including Acacia, bananas (Musa paradisiaca), Camellia including tea (C. sinensis), Clematis, Cucurbitaceae, Eucalyptus, Euonymus, guavas (Psidium guajava), Hedera helix, Jasminum, Ficus, Ligustrum, Magnolia, mangoes (Mangifera indica), Myrica, olives (Olea europea), peaches (Prunus persica), poplars (Populus), Rosa, Schefflera actinophylla, Strelitzia reginae, Viburnum and Yucca. The main potential hosts in the EPPO region are Citrus spp. growing in the southern part of the region, around the Mediterranean. GEOGRAPHICAL DISTRIBUTION A. citrina originated in Asia and has spread to various tropical and subtropical regions throughout the world. The precise distribution of A. -
Efficiency of Certain Biopesticides Against the Olive Black Scale Insect, Saissetia Oleae (Olivier) on Olive Trees at Giza Governorate, Egypt
Egypt. Acad. J. Biolog. Sci., 5(2): 87-93 (2012) A. Entomology Email: [email protected] ISSN: 1687–8809 Received: 25/6/2012 www.eajbs.eg.net Efficiency of certain biopesticides against the olive black scale insect, Saissetia oleae (Olivier) on olive trees at Giza Governorate, Egypt Abd Alaziz M. Ibraheem1.; Sayed. A. G. Al-Arnaouty1; Saber F. M. Moussa2 and Samah M. Y. Helmy2 1- Faculty of Agriculture, Cairo Univ., Giza, Egypt 2- Scale insects and Mealy bugs Research Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt ABSTRACT An experiment was carried out to investigate the effect of some biopesticides for controlling the olive black scale insect, Saissetia oleae (Olivier) on olive trees at Giza Governorate, Egypt during April, 2010. Four biopesticides (Biover, Stanes-biocatch, Stanes-biomagic and Bioranza) and one plant extract (Nimbecidine) were tested. The obtained results showed that all tested biopesticides and one extract were able to decrease the infestation with the olive black scale insect on olive trees through the three post treatment counts. Data clearly showed no significant differences among their efficiency (over 85%) and Nembicidine gave 80%. INTRODUCTION Olive is one of the most economically horticultural crops in Egypt. The cultivated area of olive trees in Egypt has been rapidly expanded year after year. In 2000, it was 108322 feddans and it reached 163273 feddans in 2010. The quantity of production reached about 281745 tons in 2000 and 390932 tons in 2010. Olive trees are infested with different scale insects among them the olive black scale insect, Saissetia oleae (Olivier). -
Scale Insects (Coccoidae: Hemiptera) Infested Citrus Trees and Thier Natural Enemies, with a Key of These Pests in Egypt Mona
Egypt. Acad. J. biolog. Sci., 5(1): 1- 23 (2012) A. Entomology Email: [email protected] ISSN: 1687– 8809 Received: 15/1/2012 www.eajbs.eg.net Scale insects (Coccoidae: Hemiptera) infested citrus trees and thier natural enemies, with a key of these pests in Egypt Mona Moustafa Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ABSTRACT Scale insects (Coccoidae: Hemiptera) are the most important pests infested citrus trees in Egypt. The present work dealt with the scale insects infested citrus trees and thier natural enemies as well as a key of these pests in Egypt . The results indicated that seven species of scale insects were recorded infested citrus trees in Egypt. Also taxonomic key of the seven species of scale insects was included. During the present work the results indicated that the populations of red scale, Aonidiella aurantii (Maskell) has two peaks one in April and the second one in October. In this work two parasitoids recorded associated with red scale. Theses are Aphytis lingnanensis Compere and Habrolepis aspidioti Compere and Annecke.It is recorded here two peaks for each parasitoid in April and October for A. lingnanensis and in July and November for H. aspidioti in Beni- Suef. Also this work indicated that citrus wax scale, Ceroplastes floridensis Comstock has two peaks the first in May and the second in October. In the present work two parasitoids recorded associated with citrus wax scale. These are Metaphycus helvolus (Compere) and Microterus flavus (Howard). It is recorded here two peaks for each parasitoid in May and October for in Gharbiya .The present work observed , black scale Chrysomphalus aonidum (L.) has two peaks the first in May and the second in November. -
University of Florida Thesis Or Dissertation Formatting
EVALUATION OF Rhyzobius lophanthae (BLAISDELL) AND Cryptolaemus montrouzieri MULSANT (COLEOPTERA: COCCINELLIDAE) AS PREDATORS OF Aulacaspis yasumatsui TAKAGI (HEMIPTERA: DIASPIDIDAE) By GRETA THORSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2009 1 © 2009 Greta Thorson 2 To my family for their constant support and encouragement, as well as past and present colleagues and mentors who helped inspire me along the way 3 ACKNOWLEDGMENTS I thank my family for their enthusiasm in helping me collect insects and willingness to store countless specimens in their freezers over the years. I’d especially like to thank my major professor and committee members for lending their experience and encouragement. I’d like to also thank my past mentors who inspired me to pursue entomology as a profession. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS........................................................................................................10 ABSTRACT...................................................................................................................................11 -
The Scale Insect
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2020 Band/Volume: 69 Autor(en)/Author(s): Caballero Alejandro, Ramos-Portilla Andrea Amalia, Rueda-Ramírez Diana, Vergara-Navarro Erika Valentina, Serna Francisco Artikel/Article: The scale insect (Hemiptera: Coccomorpha) collection of the entomological museum “Universidad Nacional Agronomía Bogotá”, and its impact on Colombian coccidology 165-183 Bonn zoological Bulletin 69 (2): 165–183 ISSN 2190–7307 2020 · Caballero A. et al. http://www.zoologicalbulletin.de https://doi.org/10.20363/BZB-2020.69.2.165 Research article urn:lsid:zoobank.org:pub:F30B3548-7AD0-4A8C-81EF-B6E2028FBE4F The scale insect (Hemiptera: Coccomorpha) collection of the entomological museum “Universidad Nacional Agronomía Bogotá”, and its impact on Colombian coccidology Alejandro Caballero1, *, Andrea Amalia Ramos-Portilla2, Diana Rueda-Ramírez3, Erika Valentina Vergara-Navarro4 & Francisco Serna5 1, 4, 5 Entomological Museum UNAB, Faculty of Agricultural Science, Cra 30 N° 45-03 Ed. 500, Universidad Nacional de Colombia, Bogotá, Colombia 2 Instituto Colombiano Agropecuario, Subgerencia de Protección Vegetal, Av. Calle 26 N° 85 B-09, Bogotá, Colombia 3 Research group “Manejo Integrado de Plagas”, Faculty of Agricultural Science, Cra 30 # 45-03 Ed. 500, Universidad Nacional de Colombia, Bogotá, Colombia 4 Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Research Center Tibaitata, Km 14, via Mosquera-Bogotá, Cundinamarca, Colombia * Corresponding author: Email: [email protected]; [email protected] 1 urn:lsid:zoobank.org:author:A4AB613B-930D-4823-B5A6-45E846FDB89B 2 urn:lsid:zoobank.org:author:B7F6B826-2C68-4169-B965-1EB57AF0552B 3 urn:lsid:zoobank.org:author:ECFA677D-3770-4314-A73B-BF735123996E 4 urn:lsid:zoobank.org:author:AA36E009-D7CE-44B6-8480-AFF74753B33B 5 urn:lsid:zoobank.org:author:E05AE2CA-8C85-4069-A556-7BDB45978496 Abstract. -
Hemiptera: Coccidae) in Brazil: Occurrence on Mahogany Seedlings
First report of Saissetia miranda (Cockerell & Parrott) (Hemiptera: Coccidae) in Brazil: occurrence on mahogany seedlings Marcelo Tavares de Castro1,*, Sandro Coelho Linhares Montalvão2, Rose Gomes Monnerat3, Ernesto Prado4, Marcelo Coutinho Picanço5, and Ana Lucia Benfatti Gonzalez Peronti6 The Brazilian mahogany tree, Swietenia macrophylla King (Melia- Mexican black scale, a polyphagous soft scale recorded here for the ceae), is a native tree of Central and South American forests, where it first time in Brazil. Mahogany seedlings showed deformation of the also is known as Honduran or big-leaf mahogany, or simply mahogany stem and the apical bud and the presence of sooty mold fungi due to (Snook 1998). It is a dominant species in the forest canopy, reaching a the large amount of honeydew excreted by the insect (Fig. 1). Sooty total height of about 70 m and a diam of about 3.5 m (Williams 1932; mold blocks light, reducing photosynthesis and tree vigor. Lamb 1966; Pennington & Sarukhan 1968). Genus Saissetia includes 44 described species, with 13 species re- Mahogany wood is extremely valuable and used for many purposes ported from Brazil (García et al. 2017). They occur mainly in Afrotropi- (Lorenzi 1992). In Brazil, S. macrophylla has been widely used in urban cal and Neotropical regions (García et al. 2017). The most economically forestation, especially in Brasília, Federal District, and in Manaus, Ama- important species are S. coffeae (Walker) and S. oleae (Olivier), both zonas (Prance & Silva 1975). Its potential as a tree planted in parks and causing injuries to several cultivated plant hosts, especially coffee and in agroforestry systems also has encouraged seedling production, which olives trees. -
Oystershell Scale
Quick IPM Facts W289-R Oystershell Scale Lepidosaphes ulmi Host Plants Oystershell scale attacks 85 plant genera from 33 plant families including: • Birch Mother scale • Boxwood • Crabapple • Dogwood • Elm Dead crawlers • Hawthorn • Lilac Live crawlers • Linden Description • Magnolia • Maple Oystershell scale gets its name from the oystershell appearance • Ornamental cherry of its waxy coating. This armored scale insect has two forms: the • brown/apple form and the lilac form. It is an economically important pest Pear in nurseries, landscapes and orchards. The oystershell scale is mainly a • Redbud northern species and is commonly found in most states except those • Smoketree bordering Mexico and the Gulf of Mexico. • Viburnum • Willow Life Cycle Oystershell scale overwinter as white eggs protected beneath the waxy covering of the adult female scale. The crawlers hatch in the spring and then move a small distance from their mother before settling on the bark to feed (live and dead crawlers and adult scale are circled above). Crawlers form their own protective wax coating about a week later. Because of this narrow window, coordinating spray applications with crawler emergence is very important for achieving good control. Depending on the host and geographic location, oystershell scale may produce one to two generations per year. Monitoring Adult scale Look on the bark for the oystershell-shaped scale covers. Check beneath the scale covers for healthy, white eggs in the spring to estimate the effectiveness of previous control strategies. In late May, begin scouting for crawlers from the first-generation egg hatch, then again in late July when eggs from the second generation hatch. -
Survey of the Scale Insects and Mealybugs Species and Its Associated Natural Enemies on Mango Trees in Different Governorates In
Benha Journal of Applied Sciences (BJAS) print : ISSN 2356–9751 Vol.(2) Issue(2) Nov.(2017), 75-82 online : ISSN 2356–976x http:// bjas.bu.edu.eg Survey of the Scale Insects and Mealybugs Species and its Associated Natural Enemies on Mango Trees in Different Governorates in Egypt E.S.M.Amer1, M.ASalem2, M.E.H.Hanafy2 and N.Ahmed1 1Plant Protection Research Institute, A.R.C, Dokii, Giza, Egypt 2Plant Protection Dept., Faculty of Agriculture, Ain shams Univ., Egypt E-Mail: [email protected] Abstract Studies on survey of scale insects and mealybugs infested mango trees and its associated parasitoids and predators were carried out at five governorates in Egypt during two successive years (2013- 2014 and 2014- 2015). The obtained results provided the occurrence of ten scale insects and mealybugs species found on mango trees. These species were Kilifia acuminata (Signoret), Ceroplastes floridensis Comstock, Aulacaspis tubercularis Newstead, Pulvinaria psidii (Maskell), Aonidiella aurantii (Maskell), Lepidosaphes pallidula (Maskell), Planococcus citri Risso, Icerya seychellarum (Westwood), Maconellicoccus hirsutus (Green) and Hemiberlesia lataniae (Signoret). Also, We recorded many species of parasitoids were associated with scale insects and mealybugs during two years of study. The parasitoids species were Metaphycus flavus (Haward), Habrolepis aspidioti( Compere & Annecke), Encarsia citrine Craw, Aphytis chrysomphali Mercet and Aphytis lepidosaphes Compere and we recorded several of predators were associated with scale insects and mealybugs, Rodalia cardinalis (Mulsant), Scymnus syriacus (Marseul), Exochomus flavipes (Thunberg) and Hemisarcoptes coccophagus (Meyer). Key words: Survey, Scale insects and mealybugs, Parasitoids and predators, Mango trees, Egypt. 1. Introduction for survey study during the period from January Mango Mangifera indica L. -
COMPARATIVE LIFE HISTORY of COCONUT SCALE INSECT, Aspidiotus Rigidus Reyne (HEMIPTERA: DIASPIDIDAE), on COCONUT and MANGOSTEEN
J. ISSAAS Vol. 25, No. 1: 123-134 (2019) COMPARATIVE LIFE HISTORY OF COCONUT SCALE INSECT, Aspidiotus rigidus Reyne (HEMIPTERA: DIASPIDIDAE), ON COCONUT AND MANGOSTEEN Cris Q. Cortaga, Maria Luz J. Sison, Joseph P. Lagman, Edward Cedrick J. Fernandez and Hayde F. Galvez Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031 Corresponding author: [email protected] (Received: October 3, 2018; Accepted: May 19, 2019) ABSTRACT The devastation of millions of coconut palms caused by outbreak infestation of the invasive Coconut Scale Insect (CSI) Aspidiotus rigidus Reyne, has posed a serious threat to the industry in the Philippines. The life history of A. rigidus on coconut and mangosteen was comparatively studied to understand the effects of host-plant species on its development, to investigate potential host-suitability factors that contributed to its outbreak infestation, and to gather baseline information on the development and characteristics of this pest. The study was conducted at the Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños. Insect size (body and scale) was not significantly different on both hosts during egg, crawler, white cap, pre-second and second instar stages, as well as during male pre-pupal, pupal and adult stages. The female third instars and adults, however, were bigger on mangosteen than on coconut. At the end of second instar, sexual differentiation was very visible wherein parthenogenic females further undergone two developmental stages: third instar and adults that feed permanently on the leaves. Males undergone three stages: pre- pupa, pupa and winged adults.