Distribution Records of Aphids (Hemiptera: Phylloxeroidea, Aphidoidea) Associated with Main Forest-Forming Trees in Northern Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Encounters Between Aphids and Their Predators: the Relative Frequencies of Disturbance and Consumption
Blackwell Publishing Ltd Encounters between aphids and their predators: the relative frequencies of disturbance and consumption Erik H. Nelson* & Jay A. Rosenheim Center for Population Biology and Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616, USA Accepted: 3 November 2005 Key words: avoidance behavior, escape behavior, induced defense, non-consumptive interactions, non-lethal interactions, predation risk, trait-mediated interactions, Aphididae, Homoptera, Aphis gossypii, Acyrthosiphon pisum Abstract Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non-consumptive, defense-inducing encounters relative to consumptive encounters (hence- forth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : con- sumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics. -
Chromosome-Level Genome Assembly of the Horned-Gall Aphid, Schlechtendalia
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431348; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Chromosome-level genome assembly of the horned-gall aphid, Schlechtendalia 2 chinensis (Hemiptera: Aphididae: Erisomatinae) 3 4 Hong-Yuan Wei1#, Yu-Xian Ye2#, Hai-Jian Huang4, Ming-Shun Chen3, Zi-Xiang Yang1*, Xiao-Ming Chen1*, 5 Chuan-Xi Zhang2,4* 6 1Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China 7 2Institute of Insect Sciences, Zhejiang University, Hangzhou, China 8 3Department of Entomology, Kansas State University, Manhattan, KS, USA 9 4State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; 10 Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant 11 Virology, Ningbo University, Ningbo, China 12 #Contributed equally. 13 *Correspondence 14 Zi-Xiang Yang, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 15 E-mail: [email protected] 16 Xiao-Ming Chen, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 17 E-mail: [email protected] 18 Chuan-Xi Zhang, Institute of Insect Sciences, Zhejiang University, Hangzhou, China. 19 E-mail: [email protected] 20 Funding information 21 National Natural Science Foundation of China, Grant/Award number: 31872305, U1402263; The basic research 22 program of Yunnan Province, Grant/Award number: 202001AT070016; The grant for Innovative Team of ‘Insect 23 Molecular Ecology and Evolution’ of Yunnan Province 24 25 Abstract 26 The horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces 27 galls valuable for medicinal and chemical industries. -
With a Revised Checklist of Species Occurring in Poland
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Title: Capitophorus wojciechowskii - a new aphid species from Iran (Hemiptera: Aphididae: Aphididae: Macrosiphini) Author: Karina Wieczorek, Mariusz Kanturski Citation style: Wieczorek Karina, Kanturski Mariusz. (2015). Capitophorus wojciechowskii - a new aphid species from Iran (Hemiptera: Aphididae: Aphididae: Macrosiphini). "Polish Journal of Entomology" (2015, z. 4, s. 361-370), doi 10.1515/pjen-2015-0031 P O L I S H JOU R NAL OF ENTOM O LOG Y POL SKIE PISMO ENTOMOL OGICZ N E VOL. 84: 361–370 Lublin 30 December 2015 DOI: 10.1515/pjen-2015-0031 Capitophorus wojciechowskii – a new aphid species from Iran (Hemiptera: Aphididae: Aphidinae: Macrosiphini)* KARINA WIECZOREK, MARIUSZ KANTURSKI Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland, e-mails: [email protected], [email protected] ABSTRACT. A new aphid species – Capitophorus wojciechowskii sp. n. – from northern Iran, associated with Hippophae rhamnoides and Hippophae sp., belonging to the tribe Macrosiphini (Hemiptera: Aphididae) is described. The fundatrix, apterous viviparous female, oviparous female and apterous male are described and illustrated. Similarities and differences with other Capitophorus species living on Elaeagnaceae are discussed. A key to Elaeagnaceae feeding aphids from the genus Capitophorus is also provided. KEY WORDS: aphids, Elaeagnaceae, Hippophae, new species. INTRODUCTION The genus Capitophorus VAN DER GOOT, 1913, belonging to the tribe Macrosiphini, comprises about 30 described Nearctic, Palaearctic and Oriental species (BLACKMAN & EASTOP 2015). Aphids from this genus are characterized by a slender, very pale, almost translucent body and long legs. -
Macedonian Journal of Ecology and Environment Diversity of Invertebrates in the Republic of Macedonia
Macedonian Journal of Ecology and Environment Vol. 17, issue 1 pp. 5-44 Skopje (2015) ISSN 1857 - 8330 Original scientific paper Available online at www.mjee.org.mk Diversity of invertebrates in the Republic of Macedonia Диверзитет на безрбетниците во Република Македонија 1,2, * 1,2 3 4 Slavčo HRISTOVSKI , Valentina SLAVEVSKA-STAMENKOVIĆ , Nikola HRISTOVSKI , Kiril ARSOVSKI , 5 6 6 7 8 Rostislav BEKCHIEV , Dragan CHOBANOV , Ivaylo DEDOV , Dušan DEVETAK , Ivo KARAMAN , Despina 2 9 6 2 10 KITANOVA , Marjan KOMNENOV , Toshko LJUBOMIROV , Dime MELOVSKI , Vladimir PEŠIĆ , Nikolay 5 SIMOV 1 Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia 2 Macedonian Ecological Society, Vladimir Nazor 10, 1000 Skopje, Macedonia 3 Faculty of Biotechnology, St. Kliment Ohridski University, 7000 Bitola, Macedonia 4 Biology Students' Research Society, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia 5 National Museum of Natural History, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria 6 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria 7 Department of Biology, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia 8 Department of Biology and Ecology, Faculty of Sciences, Trg D. Obradovića 2, 21000 Novi Sad, Serbia 9 Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece 10 Department of Biology, University of Montenegro, 81000 Podgorica, Montenegro The assessment of the diversity of invertebrates in Macedonia was based on previous assess- ments and analyses of new published data in the period 2003-2013 (after the first country study on biodiversity). -
The Mechanism by Which Aphids Adhere to Smooth Surfaces
J. exp. Biol. 152, 243-253 (1990) 243 Printed in Great Britain © The Company of Biologists Limited 1990 THE MECHANISM BY WHICH APHIDS ADHERE TO SMOOTH SURFACES BY A. F. G. DIXON, P. C. CROGHAN AND R. P. GOWING School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ Accepted 30 April 1990 Summary 1. The adhesive force acting between the adhesive organs and substratum for a number of aphid species has been studied. In the case of Aphis fabae, the force per foot is about 10/iN. This is much the same on both glass (amphiphilic) and silanized glass (hydrophobic) surfaces. The adhesive force is about 20 times greater than the gravitational force tending to detach each foot of an inverted aphid. 2. The mechanism of adhesion was considered. Direct van der Waals forces and viscous force were shown to be trivial and electrostatic force and muscular force were shown to be improbable. An adhesive force resulting from surface tension at an air-fluid interface was shown to be adequate and likely. 3. Evidence was collected that the working fluid of the adhesive organ has the properties of a dilute aqueous solution of a surfactant. There is a considerable reserve of fluid, presumably in the cuticle of the adhesive organ. Introduction The mechanism by which certain insects can walk on smooth vertical and even inverted surfaces has long interested entomologists and recently there have been several studies on this subject (Stork, 1980; Wigglesworth, 1987; Lees and Hardie, 1988). The elegant study of Lees and Hardie (1988) on the feet of the vetch aphid Megoura viciae Buckt. -
Temporal and Spatial Variation to Ant Omnivory in Pine Forests
Ecology, 86(5), 2005, pp. 1225±1235 q 2005 by the Ecological Society of America TEMPORAL AND SPATIAL VARIATION TO ANT OMNIVORY IN PINE FORESTS KAILEN A. MOONEY1,3 AND CHADWICK V. T ILLBERG2 1University of Colorado, Department of Ecology and Evolutionary Biology, Boulder, Colorado 80309-0334 USA 2University of Illinois, Department of Animal Biology, School of Integrative Biology, Urbana, Illinois 61801 USA Abstract. To understand omnivore function in food webs, we must know the contri- butions of resources from different trophic levels and how resource use changes through space and time. We investigated the spatial and temporal dynamics of pine (Pinus pon- derosa) food webs that included the omnivorous ant, Formica podzolica, using direct observation and stable isotopes. Formica podzolica is a predator of herbivorous and pred- atory arthropods, and a mutualist with some aphids. Observations in 2001 of foragers showed that in early summer (June) ants fed upon equal parts non-mutualist herbivores (31% prey biomass), mutualist aphids (27%), and predators (42%); ant trophic position was thus between that of primary and secondary predator (trophic level 5 3.4). In late summer (September), ant feeding remained relatively constant upon non-mutualist herbi- vores (53%) and mutualist aphids (43%), but ant feeding upon predators fell (4%), thus shifting ant trophic position to that of a primary predator (trophic level 5 3.0). Feeding on honeydew increased from 25% of ants in early summer to 55% in late summer. By increasing the frequency of their interactions with mutualist aphids, ants maintained a constant supply of arthropod prey through the summer, despite a two±thirds decline in arthropod biomass in pine canopies. -
Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan. -
Using Multiple Methodologies to Understand Within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biology Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Aronowitz, Tav, "Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha)" (2017). Graduate College Dissertations and Theses. 713. https://scholarworks.uvm.edu/graddis/713 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. USING MULTIPLE METHODOLOGIES TO UNDERSTAND WITHIN SPECIES VARIABILITY OF ADELGES AND PINEUS (HEMIPTERA: STERNORRHYNCHA) A Thesis Presented by Tav (Hanna) Aronowitz to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Natural Resources May, 2017 Defense Date: March 6, 2016 Thesis Examination Committee: Kimberly Wallin, Ph.D., Advisor Ingi Agnarsson, Ph.D., Chairperson James D. Murdoch, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The species of two genera in Insecta: Hemiptera: Adelgidae were investigated through the lenses of genetics, morphology, life cycle and host species. The systematics are unclear due to complex life cycles, including multigenerational polymorphism, host switching and cyclical parthenogenesis. I studied the hemlock adelgids, including the nonnative invasive hemlock woolly adelgid on the east coast of the United States, that are currently viewed as a single species. -
Coccinellidae)
ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology. -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Aphids (Hemiptera, Aphididae)
A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time. -
Hemiptera: Adelgidae)
The ISME Journal (2012) 6, 384–396 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae) Elena R Toenshoff1, Thomas Penz1, Thomas Narzt2, Astrid Collingro1, Stephan Schmitz-Esser1,3, Stefan Pfeiffer1, Waltraud Klepal2, Michael Wagner1, Thomas Weinmaier4, Thomas Rattei4 and Matthias Horn1 1Department of Microbial Ecology, University of Vienna, Vienna, Austria; 2Core Facility, Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria; 3Department of Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria and 4Department of Computational Systems Biology, University of Vienna, Vienna, Austria Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing o92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola’ and ‘Candidatus Ecksteinia adelgidicola’ are proposed for tentative classification.