Data Sheets on Quarantine Pests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iranian Aphelinidae (Hymenoptera: Chalcidoidea) © 2013 Akinik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N
Journal of Entomology and Zoology Studies 2013;1 (4): 116-140 ISSN 2320-7078 Iranian Aphelinidae (Hymenoptera: Chalcidoidea) JEZS 2013;1 (4): 116-140 © 2013 AkiNik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N. Myartseva & Enrique Ruíz- Cancino Accepted: 23-07-2013 ABSTRACT Aphelinidae is one of the most important families in biological control of insect pests at a worldwide level. The following catalogue of the Iranian fauna of Aphelinidae includes a list of all genera and species recorded for the country, their distribution in and outside Iran, and known hosts in Iran. In total 138 species from 11 genera (Ablerus, Aphelinus, Aphytis, Coccobius, Coccophagoides, Coccophagus, Encarsia, Eretmocerus, Marietta, Myiocnema, Pteroptrix) are listed as the fauna of Iran. Aphelinus semiflavus Howard, 1908 and Coccophagoides similis (Masi, 1908) are new records for Iran. Key words: Hymenoptera, Chalcidoidea, Aphelinidae, Catalogue. Shaaban Abd-Rabou Plant Protection Research 1. Introduction Institute, Agricultural Research Aphelinid wasps (Hymenoptera: Chalcidoidea: Aphelinidae) are important in nature, Center, Dokki-Giza, Egypt. especially in the population regulation of hemipterans on many different plants.These [E-mail: [email protected]] parasitoid wasps are also relevant in the biological control of whiteflies, soft scales and aphids [44] Hassan Ghahari . Studies on this family have been done mainly in relation with pests of fruit crops as citrus Department of Plant Protection, and others. John S. Noyes has published an Interactive On-line Catalogue [78] which includes Shahre Rey Branch, Islamic Azad up-to-date published information on the taxonomy, distribution and hosts records for the University, Tehran, Iran. Chalcidoidea known throughout the world, including more than 1300 described species in 34 [E-mail: [email protected]] genera at world level. -
San Jose Scale and Its Natural Enemies: Investigating Natural Or Augmented Controls
California Tree Fruit Agreement Research Report 2002 SAN JOSE SCALE AND ITS NATURAL ENEMIES: INVESTIGATING NATURAL OR AUGMENTED CONTROLS Project Leaders: Kent M. Daane Cooperators: Glenn Y. Yokota, Walter J. Bentley, Karen Sime, and Brian Hogg ABSTRACT San Jose scale (SJS) and its natural enemies were studied from 1999 through 2002. Natural populations were followed in stone fruit and almond blocks, with orchard management practices divided into “conventional” and “sustainable” practices, based on dormant and in-season insecticide use. Results generally show higher fruit damage at harvest-time in sustainably managed fields, although, these results are not consistent among orchards and exceptions to this pattern were found. In conventionally managed blocks, later harvest dates resulted in higher SJS fruit damage, although this did not hold true in sustainably managed orchards. Results from SJS pheromone-baited traps show a predominant seasonal pattern of SJS densities progressively increasing and parasitoid (Encarsia perniciosi) densities progressively decreasing. These data are discussed with respect to SJS fruit damage and parasitoid establishment and efficiency. SJS and parasitoid sampling methodology and distribution were investigated. Comparing SJS pheromone trap data to numbers of crawlers on double-sided sticky tape and SJS infested fruit at harvest show a significant correlation between pheromone trap counts of SJS males and numbers of SJS crawlers. Results suggest that there is a small window in the season (April-May) when sticky tape provides important information on crawler abundance and damage. Results show a negative correlation between the early season abundance of Encarsia (as measured by pheromone traps) and SJS damage at harvest. These results suggest that early-season ratios of parasitoid : SJS can not be used to predict fruit damage or biological control (these data require more analysis). -
HOST PLANTS of SOME STERNORRHYNCHA (Phytophthires) in NETHERLANDS NEW GUINEA (Homoptera)
Pacific Insects 4 (1) : 119-120 January 31, 1962 HOST PLANTS OF SOME STERNORRHYNCHA (Phytophthires) IN NETHERLANDS NEW GUINEA (Homoptera) By R. T. Simon Thomas DEPARTMENT OF ECONOMIC AFFAIRS, HOLLANDIA In this paper, I list 15 hostplants of some Phytophthires of Netherlands New Guinea. Families, genera within the families and species within the genera are mentioned in alpha betical order. The genera and the specific names of the insects are printed in bold-face type, those of the plants are in italics. The locality, where the insects were found, is printed after the host plants. Then follows the date of collection and finally the name of the collector1 in parentheses. I want to acknowledge my great appreciation for the identification of the Aphididae to Mr. D. Hille Ris Lambers and of the Coccoidea to Dr. A. Reyne. Aphididae Cerataphis variabilis Hrl. Cocos nucifera Linn.: Koor, near Sorong, 26-VII-1961 (S. Th.). Longiunguis sacchari Zehntner. Andropogon sorghum Brot.: Kota Nica2 13-V-1959 (S. Th.). Toxoptera aurantii Fonsc. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Theobroma cacao Linn.: Kota Nica, 19-VIII-1959 (S. Th.), Amban-South, near Manokwari, 1-XII- 1960 (J. Schreurs). Toxoptera citricida Kirkaldy. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Schizaphis cyperi v. d. Goot, subsp, hollandiae Hille Ris Lambers (in litt.). Polytrias amaura O. K.: Hollandia, 22-V-1958 (van Leeuwen). COCCOIDEA Aleurodidae Aleurocanthus sp. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Asterolecaniidae Asterolecanium pustulans (Cockerell). Leucaena glauca Bth.: Kota Nica, 8-X-1960 (S. Th.). 1. My name, as collector, is mentioned thus: "S. -
Biological Responses and Control of California Red Scale Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae)
Biological responses and control of California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) by Khalid Omairy Mohammed Submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy College of Science, Health, Engineering and Education Murdoch University Perth, Western Australia March 2020 Declaration The work described in this thesis was undertaken while I was an enrolled student for the degree of Doctor of Philosophy at Murdoch University, Western Australia. I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge, all work performed by others, published or unpublished, has been duly acknowledged. Khalid O. Mohammed Date: March 10, 2020 I Acknowledgements بِ ْس ِمِِاللَّ ِـه َِّالر ْح َم ٰـ ِن َِّالر ِح ِيمِ ُ َويَ ْسأَلُ َونَك َِع ِن ُِّالروحِِِۖقُ ِل ُِّالر ُوح ِِم ْنِأَ ْم ِر َِر ِب َيِو َماِأ ِوتيتُ ْم ِِم َن ِْال ِع ْل ِمِإِ ََّّل َِق ِل ايًلِ﴿٨٥﴾ The research for this thesis was undertaken in the School of Veterinary and Life Science, Murdoch University. I would like to express my heartfelt gratitude to my supervisors Professor Yonglin Ren and Dr Manjree Agarwal “Postharvest Biosecurity and Food Safety Laboratory Murdoch” for their support with enthusiasm, constructive editing, and patience throughout the years of this wonderful project. I deeply appreciate their encouragement, assistance and for being so willing to take me on as a student. I would like to express my sincere gratitude to all those who helped me in completing this thesis. -
Life Stages of California Red Scale and Its Parasitoids
Life Stages of California Red Scale and Its Parasitoids Lisa D. Forster Robert F Luck and Elizabeth E. Grafton-Cardwe ll ALI F OR N IA RED SCALE, Aonidiella auranlii (Mask.) (fig. 1), is a major pest or citrus that C growers have traditionally controlled with insecticides. Populations or California reel scale devel oped resistance to organophosphate and carbamate insecticides in South Africa, Australia and lsrael in the 1970s and in California in the 1990s, and these broad Figure 1. Scale infes ted fruit spectrum insecticides are losing their effectiveness. An alternate appro ach Lo chemical control or California red suppress armored scale densities below economic injury scale is augmentative biological control as part or an levels. In years when biological control is less effective, integrated pest managemem-(IPM) approach. Growers can release the insectary-reared parasitoid wasp Aphy tis selective narrow _range petroleum oil sprays can be used to help reduce scal_e numbers.This leaflet gives some me/inus DeBach from February through November to background that will help growers evaluate the effective augment the native Aphy tis populations that attack and reduce armored scale populations. This approach can ness or natural enemies of California reel scale through knowledge or the scale life cycle, the stages of scale that are attacked by parasites and predators, and the signs of parasitism. California Red Scale General Phenology FEEDING AND DORMANT LIFE STAGES California red scale start out as mobile crawlers* (fig. 2). Crawlers remain mobile only long enough to find a suitable location on a !ear, fruit, or branch to seule on and begin reeding. -
Ants, Pests and Natural Enemies in Mediterranean Citrus
ANTS, PESTS AND NATURAL ENEMIES IN MEDITERRANEAN CITRUS Ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí and Apostolos Pekas València, May 2015 UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural Departament d’Ecosistemes Agroforestals Ants, pests and natural enemies in Mediterranean citrus: ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí Apostolos Pekas València, 2015 A Dídac “Mucha gente pequeña en lugares pequeños, haciendo cosas pequeñas pueden cambiar el mundo” Eduardo Galeano Aknowledgments Després de 4 anys de feina em vénen al cap un munt de persones sense les quals, directament o indirectament, no hagués pogut acabar aquesta tesi i a les quals m’agradaria mostrar el meu agraïment. En primer lloc, vull agrair a Ferran Garcia Marí que em donara l’oportunitat de realitzar aquesta tesi amb ell. He gaudit del seu gran coneixement i de la seua ampla experiència en el camp de l’entomologia. Ha estat tot un privilegi. Gràcies per tota l’atenció i ensenyament que m’has donat. També li dec un agraïment especial a Apostolos Pekas per haver codirigit aquesta tesi i per haver-me permès d’aprofundir en la investigació que ell va encetar. Per haver confiat en mi des d’un principi sense gairebé conèixer-me. Tolis ha estat tot un exemple de rigor i professionalitat. Les discussions científiques i no científiques amb ell sempre han estat ben enriquidores. -
Consequences of Linguistic Uncertainty for Insect Management
WATCH YOUR LANGUAGE Consequences of Linguistic Uncertainty for Insect Management THERESA M. CIRA, KATHY QUICK, AND ROBERT C. VENETTE JA'CRISPY/ISTOCK 258 AMERICAN ENTOMOLOGIST | WINTER 2019 his is a call to entomologists to consider the un- certainty introduced into our works through the language we use. Albert Einstein remarked, “Every- thing depends on the degree to which words and word-combinations correspond to the world of im- Tpression,” which makes language a “dangerous source of error and deception” (Hawking 2007). Scientists usually research and deliberately choose the language they use to propose new concepts or terminology. Often, however, terms slip into the lexicon through less systematic means. Words may seem to have meanings so obvious that broad understanding of the term may be taken for granted, but individual contexts are diverse, and to assume that a word’s meaning is unchanging across time and space is to overlook the uncertainties of lan- guage. Thus, communication through even the most common entomological vocabulary can fail. Language is a mutable, un- certain, and imperfect way of representing the world. Because language is integral to science and yet inherently imprecise, it is important for scientists to recognize and address uncertain- ty in the language of our works. Uncertainty, as defined by the Society a phenomenon is repeatedly observed and for Risk Analysis (2015), is “not knowing the individuals agree that measurements con- true value of a quantity or the future con- verge, to some degree, on a specific point, sequences of an activity,” or “imperfect or more certainty about the true nature of the incomplete information/knowledge about phenomenon can be asserted. -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2010-01-01 CONTENTS _____________________________________________________________________ Pests & Diseases 2010/001 - First report of Diabrotica virgifera virgifera in Belarus 2010/002 - First record of Tuta absoluta in Bulgaria 2010/003 - First record of Tuta absoluta in Cyprus 2010/004 - First record of Tuta absoluta in Germany 2010/005 - Tuta absoluta found in Piemonte region, Italy 2010/006 - Anoplophora glabripennis found again in Germany 2010/007 - First record of Drosophila suzukii in Italy: addition to the EPPO Alert List 2010/008 - First report of Dendrolimus pini in the United Kingdom 2010/009 - Leptoglossus occidentalis: an invasive alien species spreading in Europe 2010/010 - Oxycarenus lavaterae found for the first time in the Netherlands 2010/011 - Marchalina hellenica found on the Island of Procida, Italy 2010/012 - Chrysomphalus aonidum is reported from Calabria, Italy 2010/013 - Isolated finding of Thaumatotibia (Cryptophlebia) leucotreta on Capsicum chinensis in the Netherlands 2010/014 - Incursion of Stathmopoda auriferella in the Netherlands 2010/015 - Hypercompe icasia intercepted on pot plants in the Netherlands 2010/016 - First record of Monilinia fructicola in Germany 2010/017 - Blueberry scorch virus detected in Trentino-Alto Adige and Piemonte regions, Italy 2010/018 - First record of Chalara fraxinea in Italy 2010/019 - First report of Cylindrocladium buxicola in Spain CONTENTS _______________________________________________________________________Invasive Plants 2010/020 - Cactaceae in Europe 2010/021 - New records of alien and invasive plants in Georgia 2010/022 - Hygrophila polysperma in the EPPO region: addition to the EPPO Alert List 2010/023 - Integrated Pest Management Education at the University of Minnesota (US) 2010/024 - Your input to the EPPO questionnaire on invasive alien plants in Mediterranean countries is needed 1, rue Le Nôtre Tel. -
References, Sources, Links
History of Diaspididae Evolution of Nomenclature for Diaspids 1. 1758: Linnaeus assigned 17 species of “Coccus” (the nominal genus of the Coccoidea) in his Systema Naturae: 3 of his species are still recognized as Diaspids (aonidum,ulmi, and salicis). 2. 1828 (circa) Costa proposes 3 subdivisions including Diaspis. 3. 1833, Bouche describes the Genus Aspidiotus 4. 1868 to 1870: Targioni-Tozzetti. 5. 1877: The Signoret Catalogue was the first compilation of the first century of post-Linnaeus systematics of scale insects. It listed 9 genera consisting of 73 species of the diaspididae. 6. 1903: Fernaldi Catalogue listed 35 genera with 420 species. 7. 1966: Borschenius Catalogue listed 335 genera with 1890 species. 8. 1983: 390 genera with 2200 species. 9. 2004: Homptera alone comprised of 32,000 known species. Of these, 2390 species are Diaspididae and 1982 species of Pseudococcidae as reported on Scalenet at the Systematic Entomology Lab. CREDITS & REFERENCES • G. Ferris Armored Scales of North America, (1937) • “A Dictionary of Entomology” Gordh & Headrick • World Crop Pests: Armored Scale Insects, Volume 4A and 4B 1990. • Scalenet (http://198.77.169.79/scalenet/scalenet.htm) • Latest nomenclature changes are cited by Scalenet. • Crop Protection Compendium Diaspididae Distinct sexual dimorphism Immatures: – Nymphs (mobile, but later stages sessile and may develop exuviae). – Pupa & Prepupa (sessile under exuviae, Males Only). Adults – Male (always mobile). – Legs. – 2 pairs of Wing. – Divided head, thorax, and abdomen. – Elongated genital organ (long style & penal sheath). – Female (sessile under exuviae). – Legless (vestigial legs may be present) & Wingless. – Flattened sac-like form (head/thorax/abdomen fused). – Pygidium present (Conchaspids also have exuvia with legs present). -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world. -
List of Biological Control Agents Widely Used in the Eppo Region
EPPO Standards SAFE USE OF BIOLOGICAL CONTROL LIST OF BIOLOGICAL CONTROL AGENTS WIDELY USED IN THE EPPO REGION PM 6/3 English 2021 VERSION oepp eppo European and Mediterranean Plant Protection Organization 21 Boulevard Richard Lenoir, 75011 Paris, France APPROVAL EPPO Standards are approved by EPPO Council. The date of approval appears in each individual standard. In the terms of Article II of the IPPC, EPPO Standards are Regional Standards for the members of EPPO. REVIEW EPPO Standards are subject to periodic review and amendment. The next review date for this set of EPPO Standards is decided by the EPPO Working Party on Phytosanitary Regulations. AMENDMENT RECORD Amendments will be issued as necessary, numbered and dated. The dates of amendment appear in each individual standard (as appropriate). DISTRIBUTION EPPO Standards are distributed by the EPPO Secretariat to all EPPO member governments. Copies are available to any interested person under particular conditions upon request to the EPPO Secretariat. SCOPE The EPPO Standards on the safe use of biological control are intended to be used by NPPOs or equivalent authorities, in their capacity as bodies responsible for overseeing and, if appropriate, regulating the introduction and use of biological control agents. OUTLINE OF REQUIREMENTS NPPOs of the EPPO region generally promote the use of biological control in plant protection because, like other aspects of integrated pest management, it reduces risks to human health and the environment. Use of biological control agents may, nevertheless, present some risks, in particular for the environment if exotic agents are introduced from other continents, and for the user if agents are formulated as plant protection products. -
Armored Scale Insecticide Resistance Challenges San Joaquin Valley Citrus Growers
UC Agriculture & Natural Resources California Agriculture Title Armored scale insecticide resistance challenges San Joaquin Valley citrus growers Permalink https://escholarship.org/uc/item/05x749xn Journal California Agriculture, 55(5) ISSN 0008-0845 Authors Grafton-Cardwell, Elizabeth E. Ouyang, Yuling Striggow, Rebecka et al. Publication Date 2001-09-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Armored scale insecticide resistance challenges San Joaquin Valley citrus growers Elizabeth Grafton-Cardwell o Wing Ouyang o Rebecka Striggow o Stacy Vehrs Organophosphateand carbamate alifornia red scale and yellow the year. Biological control utilizes insecticides have been used to scale have been important eco- natural predators of crop pests to limit treat citrus pest problems for nomic pests in California citrus for their growth and spread. more than 40 years. From 1990 to more than 80 years. Scale are tiny in- In the San Joaquin Valley, where 1998, we documented California sects with a dark, circular, waxy cover- winter and summer temperatures are red scale and yellow scale ing over their bodies. They live on the more extreme and the pest citrus resistance to these insecticides. twigs and leaves of the plant and the thrips (Scirtothrips citri) have been con- Armored scale resistance is found rind of citrus fruit, giving the fruit an trolled by broad-spectrum insecticides, on an estimated 40% of 163,000 unattractive, scaly appearance. biological control has been more diffi- acres of citrus in the San Joaquin California red scale, Aonidiella cult to accomplish. Broad-spectrum in- aurantii (Maskell), and yellow scale, secticides applied for the pest citrus Valley.