Myriapoda & Onychophora

Total Page:16

File Type:pdf, Size:1020Kb

Myriapoda & Onychophora N° 33-2000 ISSN 1161-2398 BULLETIN DU CENTRE INTERNATIONAL DE MYRIAPODOLOGIE LIST OF WORKS PUBLISHED OR IN PRESS ~ LISTE DES TRAVAUX PARUS ET SOUS-PRESSE MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS DEMANGE J.M., GEOFFROY J.J., MAURIES J.P. & NGUYEN DUY • JACQUEMIN M. (EDS) © CIM, 2000 N° 33-2000 ISSN 1161-2398 BULLETIN DU CENTRE INTERNATIONAL DE MYRIAPODOLOGIE Museum National d' Histoire Naturelle, Laboratoire de Zoologie-Arthropodes, 61 rue Buffon F-75231 PARIS Cedex 05 Is Onychophora a polymammal ? DEMANGE J.M., GEOFFROY J.J., MAURIES J.P. & NGUYEN DUY- JACQUEMIN M. {EDS) © CIM, 2000 SOMMAIRE I CONTENTS I ZUSAMMENFASSUNG Pages I Pages I Seite A vant-propos I Foreword I---------------------------------------------------------------------------- 1 ~o11tact ~Irvf --------------------------------------------------------------------------------------------- 2 A propos du ~e11tre I11tematio11al de rvfyriapodologie --------------------------------------------- 3 What about the ~e11tre I11tematio11al de rvfyriapodologie ----------------------------------------- 4 ~Irvf : Statuts -------------------------------------------------------------------------------------------- 5 ~!rvf: ~)1-laws_----~------------------------------------------------------------------------------------- 6 FIIlallcial COiltributiolls -------------------------------------------------------------------------------- 7 Bila11 fi11a11cier 1999 I Fi11a11cial bala11ce 1999 ------------------------------------------------------ 8 I11tematio11al co11gresses I ~o11gres i11tematio11aux --------------------------------------------------9 I11 memoriam Narcis rvfrsic -------------------------------------------------------------------------- 10 I11 memoriam Ted Easo11 ------------------------------------------------------------------------------ 12 I11 memoriam rvfaria ~risti11a Vice11te --------------------------------------------------------------- 14 lil memoriam Ja11 J arosz ------------------------------------------------------------------------------ 15 I11 memoriam Vill;r Aelle11 --------------------------------------------------------------------------- 16 About some Web Sites I Quelques 11ouvelles des sites Web -------------------------------------17 Biblio data-bases ---------------------------------------------------------------------------------------19 Ico11ograph;r --------------------------------------..:-----.----------------------------------------------- 20 Hothouse illhabitants ---------------------------------------------------------------------------------- 21 How man;r rvf;rriapoda are there ? ------------------------------------------------------------------- 22 ~e11tral Europea11 Workshops 011 Soil Zoolog;r ----------------------------------------------------23 ~hecklist of the rvfillipeds of North a11d rvfiddle America--------------------------------------- 25 ~Irvf Questiollllaire ------------------------------------------------------------------------------------ 26 Proceedi11gs, books, bulleti11s, journals ------------------------------------------------------------- 27 Sujets actuelleme11t abordes ou e11 projet /Matters being dealt or scheduled-----------------29 Tableau a11a1;rtique sommaire des travaux parus et sous presse e11 1999 Analytical summarized table ofthe works published or in press in 1999 --------------------- 36 Liste des travaux parus e11 1999 (et debut 2000) et sous presse List ofworks published in 1999 (and early 2000) or in press ----------------------------------- 41 Alllluaire mo11dial des m;rriapodologistes I Directory ofthe myriapodologists --------------- 59 Allllo11ces - Allllou11cemellts - Allzeige I 011 recherche - Wanted - Gesucht ------------------ 80 Cover picture: « By any chance, is Onychophora a mammal ? » Peripatopsis moseleyi (Wood-rvfason, 1879), South Africa, Natal, District Petermaritzburg Photo b;r H. Ruhberg & H. Bosch, 1974 J.M. DEMANGE, J.J. GEOFFROY, J.P. MAURIES & rvf. NGUYEN DUY-JACQUEMIN (EDS), 2000 Avant-propos I Foreword The CIM at the very end of the century This issue number 33 of the Bulletin du Centre International de Myriapodologie states with the situation of the CIM at the very end of the century and millenium and mentions some questions dealing with the very near future. The present bulletin is the result of the work realized by the CIM-secretariat during 1999-2000, in collaboration with colleagues that have sent informations and answered the questionnaire. We are this year particularly happy and proud because we won the score: 115 reply forms to the questionnaire is obviously the best score never obtained since 1969. Thank you very much to all of you for help and contribution. In 2000, the CIM file is composed of 231 active members. 26 new members have been registered, from Australia, Austria, Belarus, Brazil, France, Germany, India, Italy, Poland, Romania, Russia, Slovenia, Spain, UK and USA. 18 previous members have been withdrawn from the list, 3 after decease, 3 after resignation and 12 after complete disappearance during more than 6 years. We are particularly sad when thinking of recent late friends such as Edward Eason, Narcis Mrsic, Maria Cristina Vicente, Villy Aellen and Jan Jarosz. As you know, the permanent secretariat of the CIM is assisted by an international committee, including founding members of the CIM, organizers of international congresses and members nominated by the plenary international sessions of myriapodologists I onychohorologists. Today, this committee is composed of: J.M. DEMANGE (Paris, France); J.P. MAURIES (Paris, France); 0. KRAUS (Hamburg, Germany); J.G. BLOWER (Levens, UK); R.L. HOFFMAN (Martinsville, Virginia, U.S.A.); C.A.W. JEEKEL (Oisterwijk, The Netherlands); A. MINELLI (Padova, Italy); H. ENGHOFF (Copenhagen, Denmark); E. MEYER (Innsbruck, Austria); M. NGUYEN DUY - JACQUEMIN (Paris, France), J.J. GEOFFROY (Brunoy, France) and J. WYTWER (Warsawa, Poland). We had in July 1999 the 11th International Congress of Myriapodology, held in Poland, another successfull and friendly meeting to add to the CIM history, wonderfully organized by Jolanta WYTWER and CoiL in the deep heart of the Bialowieza Forest. During the formal CIM session, several important decisions were taken: Jolanta Wytwer became a member of the CIM International Committee; the constitution of the CIM as a formal association was registered; proposals for next congresses were discussed for 2002 (in Natal, South Africa) and for 2005 in Bergen (Norway). So, we can be very optimistic for the future, studies by myriapodologists, onychophorologists and even « arthropleurologists » are very far from extinction. All these informations will be available in the Website of the CIM, provided in 2000 and managed as indicated inside this bulletin. This website has several aims to develop and improve and a lot of connections to install towards other websites or addresses. The first version is to be checked during 2000 with the active collaboration of myriapodologist navigators. Enjoy your visit ! And now, let us go and read what are the mille-pattes news for this year. Best wishes and regards Jean-Jacques GEOFFROY CIM General-Secretary 1 ELECTRONIC-MAIL FAX You can contact the permanent Secretariat [and answer the questionnaire] by Fax, byE­ Mail, or on the Web: Vous pouvez contacter le Secretariat permanent du CIM [et repondre au questionnaire] par Fax, par Courrier electronique ou sur le Web: (Laboratoire de Zoologie Arthropodes, MNHN) The secretariat members [email protected] (Jean-Jacques Geoffroy) [email protected] (Jean-Paul Mauries) [email protected] (Monique Nguyen Duy- Jacquemin) are listening to you We have also a provisional CIM-homepage address: http://perso. worldonline.fr/myriapoda 2 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE Museum National d'Histoire Naturelle (Zoologie-Arthropodes) 61, rue Buffon F-75231 Paris Cedex 05 (France) Cree a Paris en 1968, le CENTRE INTERNATIONAL DE MYRIAPODOLOGIE (CIM) represente le groupement des myriapodologistes et onychophorologistes du monde entier. Le secretariat permanent du CIM est situe au Museum National d'Histoire Naturelle de Paris: Laboratoire de Zoologie-Arthropodes. Il a pour mission d'informer rapidement les myriapodologistes (mais aussi les autres zoologistes et biologistes qui le desirent) sur les travaux en cours ou publies dans tous les domaines de la myriapodologie (Myriapoda & Onychophora), allant de I' etude des macromolecules a celle des complexes d'ecosystemes. Pour son fonctionnement, Le CIM re~oit de la part de ses membres une aide flnanciere annuelle de 100 francs fran~ais (20 US$, 16 Euros) ou, a defaut, des ouvrages ou tires-a-part destines a constituer une bibliotheque specialisee. Celle-ci est deposee au Museum National d'Histoire Naturelle, Zoologie-Arthropodes. En decembre de chaque annee, tous les collegues inscrits au CIM re<;:oivent un questionnaire. Celui-ci demande a chacun la liste des travaux publies ou sous-presse pour l'annee ecoulee, mais aussi les sujets d'etude en cours ou en projet. En outre, il sollicite demandes ou informations pouvant interesser tout chercheur dont le travail touche, de pres ou de loin, aux Myriapodes et aux Onychophores. Les scientifiques interroges renvoient ce questionnaire fin fevrier et, de !'ensemble des reponses venues de pays du monde entier, nalt le bulletin, bibliographique et analytique, complete de I' annuaire, qui est envoye a to us les com~gues en avril-mai. Lorsqu'un collegue reste cinq ans sans repondre au questionnaire,
Recommended publications
  • Integrative Revision of the Giant Pill-Millipede Genus Sphaeromimus
    A peer-reviewed open-access journal ZooKeys 414: 67–107 (2014) New Sphaeromimus species from Madagascar 67 doi: 10.3897/zookeys.414.7730 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae) Thomas Wesener1,2,†, Daniel Minh-Tu Le1,3,‡, Stephanie F. Loria1,4,§ 1 Field Museum of Natural History, Zoology - Insects, 1400 S. Lake Shore Drive, 60605 Chicago, Illinois, U.S.A. 2 Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Center for Taxonomy and Evolutionary Research (Section Myriapoda), Adenauerallee 160, 53113 Bonn, Germany 3 School of the Art Institute of Chicago, 36 S. Wabash Avenue, 60603 Chicago, Illinois, U.S.A. 4 American Museum of Natural History, Richard Glider Graduate School, Central Park West at 79th Street, New York, U.S.A. † http://zoobank.org/86DEA7CD-988C-43EC-B9D6-C51000595B47 ‡ http://zoobank.org/AD76167C-3755-4803-AEB5-4CD9A7CB820A § http://zoobank.org/ED92B15A-10F9-47B8-A8FA-D7673007F8A5 Corresponding author: Thomas Wesener ([email protected]) Academic editor: D.V. Spiegel | Received 15 April 2014 | Accepted 8 May 2014 | Published 6 June 2014 http://zoobank.org/59FA2886-34C2-4AEF-9783-3347E5EBC702 Citation: Wesener T, Le DM-T, Loria SF (2014) Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae). ZooKeys 414: 67–107. doi: 10.3897/zookeys.414.7730 Abstract The Malagasy giant pill-millipede genusSphaeromimus de Saussure & Zehntner, 1902 is revised. Seven new species, S.
    [Show full text]
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Myriapoda, Symphyla)
    A peer-reviewed open-access journal ZooKeys 789: 103–113 (2018) First record of Scolopendrellopsis from China... 103 doi: 10.3897/zookeys.789.27356 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla) Ya-Li Jin1, Yun Bu1 1 Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Mu- seum, Shanghai, 200041, China Corresponding author: Yun Bu ([email protected]) Academic editor: Pavel Stoev | Received 12 June 2018 | Accepted 16 August 2018 | Published 10 October 2018 http://zoobank.org/8737EB89-629A-4DA2-B998-5F46F2C5E4B5 Citation: Jin Y-L, Bu Y (2018) First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla). ZooKeys 789: 103–113. https://doi.org/10.3897/zookeys.789.27356 Abstract The genus Scolopendrellopsis Bagnall, 1913 is recorded from China for the first time andScolopendrellopsis glabrus sp. n. is described and illustrated. The new species is characterized by the short central rod on head, third tergite complete, four kinds of sensory organs present on antenna, and the cerci rather short and covered with a low number of straight setae. Keywords antennal sensory organ, chaetotaxy, taxonomy, tergal process, Tömösváry organ Introduction There are 204 symphylan species known in the world to date (Szucsich and Scheller 2011; Domínguez Camacho and Vandenspiegel 2012; Bu and Jin 2018); however, only few publications deal with those from Asia. Hansen firstly described five species of Symphyla from Southeast Asia (Hansen 1903). After that several species were described from India (Scheller 1971), Indonesia (Scheller 1988), USSR (Scheller and Golovatch 1982), Russian Far East (Scheller and Mikhaljova 2000) and Iran (Scheller et al.
    [Show full text]
  • Diplopoda, Polyxenida, Lophoproctidae) Extend the Range of the Genus Lophoproctus
    A peer-reviewed open-access journal ZooKeys 510: 209–222 (2015) New records of Lophoproctus coecus Pocock, 1894... 209 doi: 10.3897/zookeys.510.8668 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New records of Lophoproctus coecus Pocock, 1894 (Diplopoda, Polyxenida, Lophoproctidae) extend the range of the genus Lophoproctus Megan Short1 1 Deakin University, 221 Burwood Highway, Burwood, Melbourne, Australia Corresponding author: Megan Short ([email protected]) Academic editor: Ivan H. Tuf | Received 29 September 2014 | Accepted 5 May 2015 | Published 30 June 2015 http://zoobank.org/4FF544AC-67B8-413A-A544-38A3F299FCF1 Citation: Short M (2015) New records of Lophoproctus coecus Pocock, 1894 (Diplopoda, Polyxenida, Lophoproctidae) extend the range of the genus Lophoproctus. In: Tuf IH, Tajovský K (Eds) Proceedings of the 16th International Congress of Myriapodology, Olomouc, Czech Republic. ZooKeys 510: 209–222. doi: 10.3897/zookeys.510.8668 Abstract The geographic distribution of the genus Lophoproctus Pocock, 1894 has greatly expanded with new re- cords of the species Lophoproctus coecus Pocock, 1894, together with the reassignment of a number of millipedes formerly identified as Lophoproctus lucidus (Chalande, 1888). L. coecus was found to be the sole representative of the family Lophoproctidae in collections examined from Crimea and the Caucasian region. The species was also identified from Iran and Kyrgyzstan.Lophoproctus specimens collected in Italy by Verhoeff were reassigned as L. coecus with the exception of one specimen of L. jeanneli (Brölemann, 1910) from Capri. These data were combined with all available information from the literature to look at the pattern of distribution of the four species in the genus.
    [Show full text]
  • Benefits and Challenges in the Incorporation of Insects in Food
    REVIEW published: 30 June 2021 doi: 10.3389/fnut.2021.687712 Benefits and Challenges in the Incorporation of Insects in Food Products Beatriz A. Acosta-Estrada 1, Alicia Reyes 2, Cristina M. Rosell 3, Dolores Rodrigo 3 and Celeste C. Ibarra-Herrera 2* 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico, 2 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Puebla, Mexico, 3 Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Valencia, Spain Edible insects are being accepted by a growing number of consumers in recent years not only as a snack but also as a side dish or an ingredient to produce other foods. Most of the edible insects belong to one of these groups of insects such as caterpillars, butterflies, Edited by: moths, wasps, beetles, crickets, grasshoppers, bees, and ants. Insect properties are Mauro Serafini, analyzed and reported in the articles reviewed here, and one common feature is University of Teramo, Italy nutrimental content, which is one of the most important characteristics mentioned, Reviewed by: Tiziano Verri, especially proteins, lipids, fiber, and minerals. On the other hand, insects can be used as University of Salento, Italy a substitute for flour of cereals for the enrichment of snacks because of their high content Xavier Cheseto, International Center of Insect of proteins, lipids, and fiber. Technological properties are not altered when these insects- Physiology and Ecology (ICIPE), Kenya derived ingredients are added and sensorial analysis is satisfactory, and only in some Olatundun Kajihausa, cases, change in color takes place.
    [Show full text]
  • Oncept Was Used to Describe Birds Allowing Ants to Climb on Their Body Or the Behavior of Capturing and Rubbing the Ants Against the Plumage
    (2019) 30: 69–71 USE OF MILLIPEDES AS FOOD AND FOR SELF-ANOINTING BY THE PUERTO RICAN GRACKLE (QUISCALUS NIGER BRACHYPTERUS) Raúl A. Pérez-Rivera Department of Biology, University of Puerto Rico-Humacao, Puerto Rico. E-mail: [email protected] Abstract · Although rarely observed in nature, anting is widespread and has been reported in more than 200 species of birds. The concept was used to describe birds allowing ants to climb on their body or the behavior of capturing and rubbing the ants against the plumage. However, the nomenclature of this behavior has been broadened and now is called self-anointing, and includes the use of other animals, such as millipedes (Diplopoda), and even liquids. Here, I describe the Antillean Grackle (Quiscalus niger brachypterus) using millipedes (Trigoniulus coralinus and Anadenobolus monilicornis) for self-anointing and as food. The genus Anadenobolus is reported for self-anointing for the first time. I also observed five grackles, feeding upon the millipede Asiomorpha coarctata, after washing it in water. Possibly, grackles rub the millipedes on their plumage because their secretions may work as ectoparasite repellent or may decrease irritation during molting. The birds ingest these myriapods when food is scarce or because these may help against intestinal parasites. Resumen · Uso de milpiés como alimento y para “auto-unción” por el Mozambique de Puerto Rico (Quiscalus niger brachy- pterus) Aunque raras veces observado, el “hormigarse” ha sido reportado para más de 200 especies de aves. El concepto fue utilizado para explicar la conducta de aves que dejan que hormigas se suban sobre estas o las capturan, para restregárselas en su plu- maje.
    [Show full text]
  • MYRIAPODS 767 Volume 2 (M-Z), Pp
    In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades.
    [Show full text]
  • A New Species of the Genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441382; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A new species of the genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India. Somnath Bhakat Department of Zoology, Rampurhat College, Rampurhat-731224, Dist. Birbhum, W. B., India Email: [email protected] ORCID: 0000-0002-4926-2496 Abstract A new species of Carlogonus, Carlogonus bengalensis is described from West Bengal, India. The adult is blackish brown in colour with a yellowish curved tail, round body with 60 segments, 55 mm in length, 5th segment of male bears a hump, telopodite of the gonopod long, flat and band like with a single curved antetorsal process, mesal process with a red spine, proplical lobe with a curved orange spine, inner surface of metaplical fold with sigilla, palette spatula like and a few blepharochatae at the apical margin. Male bears white pad on femur and tibia. Comparison was made with the “exaratus group” of the genus Carlogonus. Keywords: Hump, red spine, sigilla, Suri, whitish pad, yellow tail Introduction A few reports mostly on different aspects of millipedes (except taxonomy) especially on Polydesmid millipedes are available from West Bengal (India). Except the study of Bhakat (2014), there is no report on any aspect of Spirostreptid millipede from this region. Of the Spirostreptid millipede, genus Carlogonus Demange, 1961 includes three Harpagophorid millipede species described in the Southeast Asian genus Thyropygus Pocock, 1894 and the South Asian genus Harpurostreptus Attems, 1936.
    [Show full text]
  • Permian Millipedes from the Fort Sill fissures of Southwestern Oklahoma, with Comments on Allied Taxa and Millipedes Preserved in Karstic Environments
    Journal of Paleontology, 95(3), 2021, p. 586–600 Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http:// creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.100 Permian millipedes from the Fort Sill fissures of southwestern Oklahoma, with comments on allied taxa and millipedes preserved in karstic environments Joseph T. Hannibal1 and William J. May2 1Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 44106, USA <[email protected]> 2Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma 73072, USA <[email protected]> Abstract.—Permian millipedes are rare, especially so considering the relative abundance of millipedes in Carboniferous rocks. We report an early Permian millipede fauna containing three new genera and species of millipedes (Oklahoma- soma richardsspurense new genus new species, Karstiulus fortsillensis new genus new species, and Dolesea subtila new genus new species) found in fossil-producing pockets of the Fort Sill fissures exposed in the Dolese Quarry near Richards Spur, southwest Oklahoma, USA. These are the first new genera of invertebrates to be described from this site, one of the most prolific fossil-vertebrate sites in the world.
    [Show full text]
  • Exploring Phylogenomic Relationships Within Myriapoda: Should High Matrix Occupancy Be the Goal?
    bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploring phylogenomic relationships within Myriapoda: should high matrix occupancy be the goal? ROSA FERNÁNDEZ1, GREGORY D. EDGECOMBE2 AND GONZALO GIRIBET1 1Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract.—Myriapods are one of the dominant terrestrial arthropod groups including the diverse and familiar centipedes and millipedes. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes in many species) or on maximizing matrix occupancy (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed forty Illumina transcriptomes representing three myriapod classes (Diplopoda, Chilopoda and Symphyla); twenty-five transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda.
    [Show full text]
  • A New Species of Illacme Cook & Loomis, 1928
    A peer-reviewed open-access journal ZooKeys 626: 1–43A new (2016) species of Illacme Cook and Loomis, 1928 from Sequoia National Park... 1 doi: 10.3897/zookeys.626.9681 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida) Paul E. Marek1, Jean K. Krejca2, William A. Shear3 1 Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA 2 Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA 3 Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA Corresponding author: Paul E. Marek ([email protected]) Academic editor: R. Mesibov | Received 25 July 2016 | Accepted 19 September 2016 | Published 20 October 2016 http://zoobank.org/36E16503-BC2B-4D92-982E-FC2088094C93 Citation: Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1–43. doi: 10.3897/zookeys.626.9681 Abstract Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second spe- cies of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet.
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]