Exploring Phylogenomic Relationships Within Myriapoda: Should High Matrix Occupancy Be the Goal?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coal and Francis Creek Shale
University of Pennsylvania ScholarlyCommons Department of Earth and Environmental Departmental Papers (EES) Science January 1970 A comparison of the floras of the Colchester (No. 2) Coal and Francis Creek Shale R. A. Peppers Illinois State Geological Survey Hermann W. Pfefferkorn University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/ees_papers Recommended Citation Peppers, R. A., & Pfefferkorn, H. W. (1970). A comparison of the floras of the Colchester (No. 2) Coal and Francis Creek Shale. Retrieved from https://repository.upenn.edu/ees_papers/18 This material has been published in Smith, W.H., Nance, R.B., Hopkins, Johnson, R.G., and Shabica, C.W. Depositional environments in parts of the Carbondale formation, western and northern Illinois: Francis Creek Shale and associated strata and Mazon Creek biota, Illinois State Geological Survey Field Guidebook Series, No. 8, p. 61-74, 1970 NOTE: At the time of publication, author Hermann W. Pfefferkorn was affiliated with the Illinois State Geological Survey. Currently (September 2005) he is a faculty member in the Department of Earth and Environmental Science at the University of Pennsylvania. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ees_papers/18 For more information, please contact [email protected]. A comparison of the floras of the Colchester (No. 2) Coal and Francis Creek Shale Abstract Abundant data from spore studies of the Colchester (no. 2) Coal Member and from investigations of plant compressions in the Francis Creek Shale provide an opportunity to compare the flora of the coal with that of the overlying shale in the northeastern part of the Illinois Basin. -
Bedrock Geology of Carbondale Quadrangle
BEDROCK GEOLOGY OF CARBONDALE QUADRANGLE Prairie Research Institute JACKSON AND WILLIAMSON COUNTIES, ILLINOIS Illinois Geologic Quadrangle Map ILLINOIS STATE GEOLOGICAL SURVEY IGQ Carbondale-BG W. John Nelson 2013 89°15' 12'30" 10' 89°07'30" 720 000FEET (IL E) 3 000mE 3 3 3 3 3 3 R. 1 W. 2 590 000 FEET (IL W) R. 1 E. 3 37°45' 03 04 05 06 07 08 10 12 37°45' 51 4180 7 8 9 10 11 12 7 8 000m &c 4180 N 13 &c Creek d r a & h t c m r C CG 508 O &c k" m r a U.S. 366 41 b e" 79 Fish and 18 17 16 15 &t 18 17 &c 13 Wildlife Ho g an 14 Po i n t 4179 m O b r a c r h Pine C a Lo n g Vi ew Island 390000 r 13 d Park FEET (IL E) Sk" 98 390 000 Ck" 322 k" 97 FEET (IL W) m 152 E 4178 k e" K r o A F L 41 ¿ S 273 78 k" PO D ¿ m R e 13 A l C t H t r i CARBONDALE C L R EXPLANATION O 19 22 19 20 20 23 24 B m A 21 R ¿ C Holocene sm Surface mine 4177 k" 105 &t ¿ m c s ¿ 41 e &t 77 Univ ersity l i &c Carbondale Formation School P m » m Desmoinesian Tradewater Formation s s, Stonefort Limestone Member m m, Murphysboro Coal Member Pennsylvanian c c, Curlew Member Southern Illinois ¿ University S 62 &t k" &t-mb Murray Bluff Sandstone Member » &t s 4176 Atokan ¿ &t &t-o olive shale member 27 4176 29 &t-g Grindstaff Sandstone Member 29 C s am e 28 30 pus Lak À 26 25 30 42'30" À 42'30" ¿ 270 m À k" S 1201 &t 290 270 Ü k" k" ªNorth uthern Hill s m So 4175 s k"317 k" 137 s 4175 &t-mb ¿ Symbols Marberry Arboretum 40 Strike and dip of bedding; number indicates degree of dip Carbondale &t r ¿ Reservoi m Horizontal bedding &t r sm ¿ 31 Evergreen Terrace C 32 Vertical joints 4174 31 34 35 36 32 k r 33 ¿ c o ¿ » Shaft mine Sk" 250 F 51 4174 ¿ S ¿ y ¿ Slope mine &t-mb c a m o ¿ À » r m Drift mine c e s m le ¿ ¿ i & ¿ t-mb m ¿ P sm ( À T. -
Myriapoda, Symphyla)
A peer-reviewed open-access journal ZooKeys 789: 103–113 (2018) First record of Scolopendrellopsis from China... 103 doi: 10.3897/zookeys.789.27356 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla) Ya-Li Jin1, Yun Bu1 1 Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Mu- seum, Shanghai, 200041, China Corresponding author: Yun Bu ([email protected]) Academic editor: Pavel Stoev | Received 12 June 2018 | Accepted 16 August 2018 | Published 10 October 2018 http://zoobank.org/8737EB89-629A-4DA2-B998-5F46F2C5E4B5 Citation: Jin Y-L, Bu Y (2018) First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla). ZooKeys 789: 103–113. https://doi.org/10.3897/zookeys.789.27356 Abstract The genus Scolopendrellopsis Bagnall, 1913 is recorded from China for the first time andScolopendrellopsis glabrus sp. n. is described and illustrated. The new species is characterized by the short central rod on head, third tergite complete, four kinds of sensory organs present on antenna, and the cerci rather short and covered with a low number of straight setae. Keywords antennal sensory organ, chaetotaxy, taxonomy, tergal process, Tömösváry organ Introduction There are 204 symphylan species known in the world to date (Szucsich and Scheller 2011; Domínguez Camacho and Vandenspiegel 2012; Bu and Jin 2018); however, only few publications deal with those from Asia. Hansen firstly described five species of Symphyla from Southeast Asia (Hansen 1903). After that several species were described from India (Scheller 1971), Indonesia (Scheller 1988), USSR (Scheller and Golovatch 1982), Russian Far East (Scheller and Mikhaljova 2000) and Iran (Scheller et al. -
Centre International De Myriapodologie
N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Mus6umNationald'HistoireNaturelle,Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-75231 ParisCedex05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISIES REPE&TORIEES PANS LA BASE PASCAL DE L' INIST 1995 N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Museum National d'Histoire N aturelle, Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-7 5231 Paris Cedex 05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISTES REPERTORIEES DANS LA BASE PASCAL DE L' INIST 1995 SOMMAIRE CONTENTS ZUSAMMENFASSUNG Pages Seite lOth INTERNATIONAL CONGRESS OF MYRIAPODOLOGY .................................. 1 9th CONGRES INTERNATIONAL DE MYRIAPODOLOGIE.................................................... 1 Contacter le Secretariat permanent par E-M AIL & FA X............................................................ 1 The Proceedings of the 9th International Congress of Myriapodology...................... 2 MILLEPATTIA, sommaire .du prochain bulletin....................................................................... 2 Obituary: Colin Peter FAIRHURST (1942-1994) ............................................................. 3 BULLETIN of the -
Cell Size Versus Body Size in Geophilomorph Centipedes
Sci Nat (2015) 102:16 DOI 10.1007/s00114-015-1269-4 ORIGINAL PAPER Cell size versus body size in geophilomorph centipedes Marco Moretto1 & Alessandro Minelli1 & Giuseppe Fusco1 Received: 22 December 2014 /Revised: 9 March 2015 /Accepted: 12 March 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Variation in animal body size is the result of a com- Introduction plex interplay between variation in cell number and cell size, but the latter has seldom been considered in wide-ranging Total body size and the relative dimensions of body parts are comparative studies, although distinct patterns of variation key attributes that shape most of a species’ functions, behav- have been described in the evolution of different lineages. iour, and ecological relationships. However, the developmen- We investigated the correlation between epidermal cell size tal mechanisms that control size and shape are still unexplored and body size in a sample of 29 geophilomorph centipede or incompletely understood in most animal taxa (Nijhout and species, representative of a wide range of body sizes, from Callier 2015). 6 mm dwarf species to gigantic species more than 200 mm In the few animal species in which adequate studies have long, exploiting the marks of epidermal cells on the overlying been performed, intraspecific variation in body size is the cuticle in the form of micro-sculptures called scutes. We found result of a complex interplay between variation in cell number conspicuous and significant variation in average scute area, and variation in cell size (e.g. Robertson 1959; Partridge et al. both between suprageneric taxa and between genera, while 1994;DeMoedetal.1997; Azevedo et al. -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Chilopoda) from Central and South America Including Mexico
AMAZONIANA XVI (1/2): 59- 185 Kiel, Dezember 2000 A catalogue of the geophilomorph centipedes (Chilopoda) from Central and South America including Mexico by D. Foddai, L.A. Pereira & A. Minelli Dr. Donatella Foddai and Prof. Dr. Alessandro Minelli, Dipartimento di Biologia, Universita degli Studi di Padova, Via Ugo Bassi 588, I 35131 Padova, Italy. Dr. Luis Alberto Pereira, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s.n., 1900 La Plata, R. Argentina. (Accepted for publication: July. 2000). Abstract This paper is an annotated catalogue of the gcophilomorph centipedes known from Mexico, Central America, West Indies, South America and the adjacent islands. 310 species and 4 subspecies in 91 genera in II fam ilies are listed, not including 6 additional taxa of uncertain generic identity and 4 undescribed species provisionally listed as 'n.sp.' under their respective genera. Sixteen new combinations are proposed: GaJTina pujola (CHAMBERLIN, 1943) and G. vera (CHAM BERLIN, 1943), both from Pycnona; Nesidiphilus plusioporus (ATT EMS, 1947). from Mesogeophilus VERHOEFF, 190 I; Po/ycricus bredini (CRABILL, 1960), P. cordobanensis (VERHOEFF. 1934), P. haitiensis (CHAMBERLIN, 1915) and P. nesiotes (CHAMBERLIN. 1915), all fr om Lestophilus; Tuoba baeckstroemi (VERHOEFF, 1924), from Geophilus (Nesogeophilus); T. culebrae (SILVESTRI. 1908), from Geophilus; T. latico/lis (ATTEMS, 1903), from Geophilus (Nesogeophilus); Titanophilus hasei (VERHOEFF, 1938), from Notiphilides (Venezuelides); T. incus (CHAMBERLIN, 1941), from lncorya; Schendylops nealotus (CHAMBERLIN. 1950), from Nesondyla nealota; Diplethmus porosus (ATTEMS, 1947). from Cyclorya porosa; Chomatohius craterus (CHAMBERLIN, 1944) and Ch. orizabae (CHAMBERLIN, 1944), both from Gosiphilus. The new replacement name Schizonampa Iibera is proposed pro Schizonampa prognatha (CRABILL. -
Catalogue of Chilean Centipedes (Myriapoda, Chilopoda)
90 (1) · April 2018 pp. 27–37 Catalogue of Chilean centipedes (Myriapoda, Chilopoda) Emmanuel Vega-Román1,2* and Víctor Hugo Ruiz2 1 Universidad del Bío Bío, Facultad de Educación, Av. Casilla 5-C, Collao 1202, Concepción, Región del Bío Bío, Chile 2 Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Barrio Universitario, Sin dirección. Casilla 160-C, Concepción, Bío Bío, Chile * Corresponding author, e-mail: [email protected] Received 11 January 2017 | Accepted 22 March 2018 Published online at www.soil-organisms.de 1 April 2018 | Printed version 15 April 2018 Abstract A review of all literature, published between 1847 and 2016, provides a comprehensive inventory of research on Chilean Chilo- poda. A total of 4 orders, 10 families, 28 genera and 70 species were recorded, highlighting the diversity of Chilopoda species in Chile. The geographical distribution and habitat preferences of all species are given with reference to the literature. Keywords Arthropoda | Chilopoda | Chile | taxonomy | biogeography 1. Introduction cross-referenced against ChiloBase 2.0, an international database of Chilopoda taxonomy (Bonato et al. 2016). The Chilopoda are a group of arthropods distributed Where species identification was considered ambiguous worldwide, occupying a wide variety of ecosystems with in the literature, it was excluded from the present analysis to the exception of polar areas (Edgecombe & Giribet 2007). avoid erroneous or non-reliable results. The exclusion cri- They are nocturnal arthropods, preferring areas with teria considered that most records were taken directly from high humidity, even inhabiting intertidal and supratidal the literature without the possibility to check the material zones (Barber 2009). -
Section IV – Guideline for the Texas Priority Species List
Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication). -
Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis
Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Monica A. Farfan, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2010 Thesis Committee: Hans Klompen, Advisor John W. Wenzel Andrew Michel Copyright by Monica A. Farfan 2010 Abstract The focus of this thesis is the ecology of invasive millipedes (Diplopoda) in the family Julidae. This particular group of millipedes are thought to be introduced into North America from Europe and are now widely found in many urban, anthropogenic habitats in the U.S. Why are these animals such effective colonizers and why do they seem to be mostly present in anthropogenic habitats? In a review of the literature addressing the role of millipedes in nutrient cycling, the interactions of millipedes and communities of fungi and bacteria are discussed. The presence of millipedes stimulates fungal growth while fungal hyphae and bacteria positively effect feeding intensity and nutrient assimilation efficiency in millipedes. Millipedes may also utilize enzymes from these organisms. In a continuation of the study of the ecology of the family Julidae, a comparative study was completed on mites associated with millipedes in the family Julidae in eastern North America and the United Kingdom. The goals of this study were: 1. To establish what mites are present on these millipedes in North America 2. To see if this fauna is the same as in Europe 3. To examine host association patterns looking specifically for host or habitat specificity. -
Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex
CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UARK Journal of the Arkansas Academy of Science Volume 56 Article 16 2002 Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma Chris T. McAllister Texas A&M University-Texarkana Rowland M. Shelley North Carolina State Museum of Natural Sciences James T. McAllister III W. T. White High School Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation McAllister, Chris T.; Shelley, Rowland M.; and McAllister, James T. III (2002) "Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma," Journal of the Arkansas Academy of Science: Vol. 56 , Article 16. Available at: http://scholarworks.uark.edu/jaas/vol56/iss1/16 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. -
Ordinal-Level Phylogenomics of the Arthropod Class
Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.