Copyright @ School of Medicine and Pharmacy, VNU

Total Page:16

File Type:pdf, Size:1020Kb

Copyright @ School of Medicine and Pharmacy, VNU ĐẠI HỌC QUỐC GIA HÀ NỘI KHOA Y DƯỢC ---------- TRỊNH TRỌNG MINH NGHIÊN CỨU CHIẾT XUẤT, PHÂN LẬP MỘT SỐ HỢP CHẤT TỪ LÁ CÂY DÂU TẰM (Morus alba L.) KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC NGÀNH DƯỢC HỌC Hà Nội – 2018 Copyright @ School of Medicine and Pharmacy, VNU ĐẠI HỌC QUỐC GIA HÀ NỘI KHOA Y DƯỢC ---------- TRỊNH TRỌNG MINH NGHIÊN CỨU CHIẾT XUẤT, PHÂN LẬP MỘT SỐ HỢP CHẤT TỪ LÁ CÂY DÂU TẰM (Morus alba L.) KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC NGÀNH DƯỢC HỌC Khóa QH.2013.Y Người hướng dẫn: 1. TS. VŨ ĐỨC LỢI 2. PSG. TS. NGUYỄN TIẾN VỮNG Hà Nội – 2018 Copyright @ School of Medicine and Pharmacy, VNU LỜI CẢM ƠN Lời đầu tiên em xin bày tỏ lòng biết ơn chân thành và sâu sắc nhất tới TS. Vũ Đức Lợi – Chủ nhiệm Bộ môn dược liệu – Dược học cổ truyền, Khoa Y Dược - ĐHQGHN người đã trực tiếp hướng dẫn tận tình, chu đáo, tạo mọi điều kiện thuận lợi nhất cho em trong suốt thời gian thực hiện khóa luận, đồng thời góp ý kiến giúp em hoàn thành khóa luận này. Em xin cám ơn PGS.TS Nguyễn Tiến Vững – Viện Pháp y Quốc gia đã tận tình hướng dẫn, truyền đạt những kinh nghiệm quý báu cho em hoàn thành khóa luận. Em xin chân thành cảm ơn các thầy cô trong Bộ môn Dược liệu – Dược cổ truyền của Khoa Y Dược, Đại học Quốc gia Hà Nội đã tạo điều kiện thuận lợi, giúp đỡ em trong quá trình học tập và hoàn thành khóa luận tốt nghiệp. Em cũng xin gửi lời cảm ơn tới các thầy cô giảng viên trong Khoa Y Dược – Đại học Quốc gia Hà Nội, bạn bè, người thân trong gia đình luôn dạy dỗ, trang bị kiến thức tạo điều kiện, quan tâm, giúp đỡ, động viên em trong suốt 5 năm qua. Em xin chân thành cảm ơn! Hà Nội, ngày tháng năm 2018 Sinh viên TRỊNH TRỌNG MINH Copyright @ School of Medicine and Pharmacy, VNU DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT STT Chữ viết tắt, ký hiệu Tên đầy đủ 1 CC Sắc ký cột 2 ESI- MS Phổ khối 3 EtOAc Ethylacetate 4 EtOH Ethanol 5 HPLC Sắc ký lỏng hiệu năng cao 6 MeOH Methanol 7 Mp Điểm nóng chảy 8 NMR Phổ cộng hưởng từ hạt nhân 9 PL Phụ lục 10 pTLC Sắc ký lớp mỏng điều chế 11 TLC Sắc ký lớp mỏng 12 UV- VIS Phổ tử ngoại- khả kiến. 13 YMC Sắc ký cột pha đảo Copyright @ School of Medicine and Pharmacy, VNU DANH MỤC CÁC BẢNG Bảng Tên bảng Trang Hàm lượng khoáng chất có trong lá Dâu tằm tươi và Bảng 1.1 12 khô Copyright @ School of Medicine and Pharmacy, VNU DANH MỤC CÁC HÌNH Hình vẽ, đồ Tên hình vẽ, đồ thị Trang thị Hình 1.1 Một số hình ảnh của cây dâu tằm 2 Cấu trúc hoá học của morusalbols A (1) và Hình 1.2. 4 morusalbols B (2) Cấu trúc hoá học của Kaempferol-3-O-β-D- Hình 1.3 glucopyranoside (1) và kaempferitrin (2) 5 Hình 1.4 Cấu trúc của một số chất nhóm flavanoid 6 Hình 1.5 Cấu trúc một số chất thuộc nhóm flavon 7 Các cấu trúc hóa học của các hợp chất linoleiyl Hình 1.6 diglycosid (1), morusflavonyl palmitate (2) và 8 morusflavone (3). Hình 1.7 Cấu trúc của 1-deoxynojirimycin (DNJ) 9 Hình 1.8 Cấu trúc moracinfurol A (1) và moracinfurol B (2) 9 Hình 1.9 Cấu trúc của hai dẫn xuất chalcone 10 Hình 1.10 Cấu trúc của các hợp chất hóa học 11 Hình 1.11 Công thức cấu tạo của MA 11 Hình 2.1 Sơ đồ tách chiết phân đoạn 21 Hình 3.1 Sơ đồ chiết xuất lá Dâu tằm 24 Hình 3.2 Sơ đồ phân lập các chất trong cắn ethylaceta 26 Cấu trúc hóa học của hợp chất Maesopsin-4-O- 27 Hình 3.3 glucosid Hình 3.4 Cấu trúc hóa học của hợp chất Leonuriside A 29 Copyright @ School of Medicine and Pharmacy, VNU Hình 3.5 Cấu trúc hóa học của hợp chất Eriodictyol 30 Copyright @ School of Medicine and Pharmacy, VNU MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT DANH MỤC BẢNG DANH MỤC HÌNH ĐẶT VẤN ĐỀ ....................................................................................................... 1 CHƯƠNG 1 : TỔNG QUAN ............................................................................... 2 1.1. Vị trí phân loại chi Morus ..................................................................... 2 1.2. Đặc điểm thực vật, phân bố của chi Morus ......................................... 2 1.2.1. Đặc điểm thực vật ................................................................................ 2 1.2.2. Phân bố và sinh thái ............................................................................. 3 1.3. Thành phần hóa học của chi Morus .................................................... 4 1.3.1. Flavonoid .............................................................................................. 4 1.3.2. Alcaloid ................................................................................................. 9 1.3.3. Một số thành phần khác ........................................................................ 9 1.4. Tác dụng dược lý của chi Morus ........................................................ 13 1.4.1. Tác dụng chống oxy hóa ..................................................................... 13 1.4.2. Tác dụng chống viêm ......................................................................... 14 1.4.3. Tác dụng làm trắng da ........................................................................ 15 1.4.4. Một số tác dụng khác .......................................................................... 16 1.5. Tác dụng và công dụng theo y học cổ truyền ................................... 17 1.5.1 Tang diệp (lá cây dâu) ......................................................................... 17 1.5.2 Tang bạch bì (vỏ rễ cây dâu) ............................................................... 18 1.5.3 Tang thầm (quả dâu chín) .................................................................... 18 1.5.4. Tang chi (cành dâu non) ..................................................................... 18 CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU.............. 20 2.1. Đối tượng và nguyên vật liệu nghiên cứu .............................................. 20 2.1.1. Đối tượng nghiên cứu ......................................................................... 20 Copyright @ School of Medicine and Pharmacy, VNU 2.1.2. Hóa chất, trang thiết bị ....................................................................... 20 2.2. Phương pháp nghiên cứu ........................................................................ 21 2.2.1. Phương pháp chiết xuất và phân lập ................................................... 21 2.2.2. Phương pháp xác định cấu trúc các hợp chất .................................... 24 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN .................................................... 25 3.1. Kết quả chiết xuất và phân lập hợp chất .......................................... 25 3.2. Kết quả xác định cấu trúc hợp chất .................................................. 29 3.2.1. Hợp chất 1: Maesopsin-4-O-glucosid ................................................ 29 3.2.2. Hợp chất 2: Leonuriside A ................................................................. 30 3.2.3. Hợp chất 3: Eriodictyol ...................................................................... 31 3.3. Bàn luận kết quả ...................................................................................... 33 3.3.1. Về chiết xuất cao toàn phần và chiết phân đoạn từng phần ............... 33 3.3.2. Về phân lập và xác định cấu trúc của các hợp chất ............................ 33 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 36 TÀI LIỆU THAM KHẢO PHỤ LỤC Copyright @ School of Medicine and Pharmacy, VNU ĐẶT VẤN ĐỀ Từ xưa tới nay, người Việt luôn tự hào với nguồn dược liệu phong phú và đa dạng, phân bố khắp mọi miền Tổ quốc. Cũng chính vì thế mà các bài thuốc dân gian được ông cha ta sử dụng rất hiệu quả và cho tới ngày nay vẫn được sử dụng. Khi mà khoa học kỹ thuật ngày càng phát triển, con người quan tâm và nghiên cứu nhiều hơn về cây dược liệu. Và nhận thấy được tiềm năng to lớn mà cây dược liệu có thể đem lại cả về tác dụng đối với sức khoẻ hay là giá trị kinh tế có thể đem lại. Vì vậy, các nghiên cứu về thành phần hoá học, và tác dụng sinh học của các thành phần hoá học trong dược liệu ngày càng nhiều. Lá cây dâu tằm cũng đang được các nhà nghiên cứu quan tâm. Cây dâu tằm (Morus alba L.) trong sách cổ của Trung Quốc được coi là loài cây quý, bởi nó có rất nhiều công dụng đối với con người, vừa có thể làm thuốc trị bệnh, vừa có thể làm thực phẩm bồi bổ cơ thể. Trong đó, lá dâu tằm không chỉ được dùng để chữa các bệnh như tiểu đường, huyết áp cao, rối loạn lipid máu, viêm đường hô hấp, nhức đầu, mờ mắt... mà còn được dùng với công dụng làm đẹp da, trắng da [3, 7]. Ngày nay, cùng với sự phát triển của xã hội, nhu cầu làm đẹp của con người tăng lên, đồng thời con người ngày càng có xu hướng tìm về với tự nhiên để tìm kiếm giải pháp làm đẹp an toàn, hiệu quả. Lá dâu được coi là một trong những nguồn nguyên liệu tự nhiên quý trong việc làm đẹp da, loại bỏ vết thâm nám, tàn nhang trên da. Cho đến nay, các công trình nghiên cứu đã công bố về thành phần hóa học cũng như tác dụng sinh học của lá cây dâu ở Việt Nam còn rất ít. Để góp phần cung cấp những cơ sở tiền đề cho việc ứng dụng nguyên liệu lá Dâu tằm trong chăm sóc sức khỏe, chúng tôi đã lựa chọn và tiến hành thực hiện đề tài: “Nghiên cứu chiết xuất, phân lập một số thành phần hóa học của lá cây dâu tằm Morus alba L” với những mục tiêu sau: 1. Chiết xuất, phân lập được một số hợp chất từ lá cây dâu tằm 2. Xác định được cấu trúc hoá học của hợp chất vừa phân lập ở trên Copyright @ School of Medicine1 and Pharmacy, VNU CHƯƠNG 1 : TỔNG QUAN 1.1. Vị trí phân loại chi Morus Theo tài liệu [1], vị trí phân loại của chi Morus là: Giới: Plantae Ngành: Ngọc lan (Magnoliophyta) Lớp: Ngọc lan (Magnoliopsida) Bộ: Gai (Urticales) Họ: Dâu tằm (Moraceae) Chi: morus Loài: alba 1.2.
Recommended publications
  • Chromanone-A Prerogative Therapeutic Scaffold: an Overview
    Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-021-05858-3 REVIEW-CHEMISTRY Chromanone‑A Prerogative Therapeutic Scafold: An Overview Sonia Kamboj1,2 · Randhir Singh1 Received: 28 September 2020 / Accepted: 9 June 2021 © King Fahd University of Petroleum & Minerals 2021 Abstract Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor diference from chromone but exhibits signifcant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman- 4-one analogues are addressed to signify the importance of chromanone as a versatile scafold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most efective and cost-efective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development. Keywords Chroman-4-one · Chromone · Pharmacological activity · Synthesis · Analogues 1 Introduction dihydropyran (ring B) which relates to chromane, chromene, chromone and chromenone, but the absence of C2-C3 dou- Chroman-4-one is one of the most important heterobicyclic ble bond of chroman-4-one skeleton makes a minor difer- moieties existing in natural compounds as polyphenols and ence (Table 1) from chromone and associated with diverse as synthetic compounds like Taxifolin, also known as chro- biological activities [1].
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen Et Al
    US010538797B2 United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen et al. (45 ) Date of Patent : Jan. 21 , 2020 (54 ) METHOD FOR THE BIOTECHNOLOGICAL ( 56 ) References Cited PRODUCTION OF FLAVONE GLYCOSIDE DIHYDROCHALCONES U.S. PATENT DOCUMENTS 9,359,622 B2 * 6/2016 Hilmer C12Y 505/01006 (71 ) Applicant: SYMRISE AG , Holzminden (DE ) 2014/0045233 A1 * 2/2014 Hilmer C12Y 505/01006 435/148 ( 72 ) Inventors : Maren Thomsen , Greifswald (DE ) ; Jakob Ley , Holzminden ( DE ) ; Egon FOREIGN PATENT DOCUMENTS Gross , Holzminden (DE ); Winfried Hinrichs , Greifswald (DE ) ; Uwe EP 2 692 729 A1 2/2014 Bornscheuer, Greifswald (DE ) OTHER PUBLICATIONS ( 73 ) Assignee : SYMRISE AG , Holzminden (DE ) Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 2 ( Year: 2014 ). * ( * ) Notice : Subject to any disclaimer, the term of this Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 4 ( Year: 2014 ). * patent is extended or adjusted under 35 Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 1 . U.S.C. 154 ( b ) by 16 days . ( Year: 2013 ) . * Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 3 . ( 21 ) Appl. No.: 15 /322,768 ( Year : 2013 ) . * Chica et al. Curr Opin Biotechnol . Aug. 2005; 16 ( 4 ): 378-84 . ( Year : 2005 ) . * ( 22 ) PCT Filed : Jun . 27 , 2015 Singh et al . Curr Protein Pept Sci. 2017 , 18 , 1-11 ( Year: 2017) . * Bornscheuer et al. Curr Protoc Protein Sci. Nov. 2011; Chapter PCT No .: PCT/ EP2015 / 064626 26 :Unit26.7 . ( Year: 2011 ). * ( 86 ) Gall et al, “ Enzymatische Umsetzung von Flavonoiden mit einer $ 371 ( c ) ( 1 ) , backteriellen Chalconisomerase und einer Enoatreduktase ,” Angewandte ( 2 ) Date : Apr.
    [Show full text]
  • WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T (51) International Patent Classification: (US). GENESKY, Geoffery [FR/FR]; 14 Rue Royale, Λ 61Κ 8/04 (2006.01) A61K 8/97 (201 7.01) 75008 Paris (FR). A61K 8/06 (2006.01) A61K 31/70 (2006.01) (74) Agent: BALLS, R., James; Polsinelli PC, 1401 Eye A61K 8/34 (2006.01) A61K 31/351 (2006.01) Street, N.W., Suite 800, Washington, DC 20005 (US). A61K 8/60 (2006.01) A61K 31/355 (2006.01) A61K 5/67 (2006.01) A61K 31/7048 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 16/068662 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 27 December 2016 (27. 12.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (25) Filing Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (26) Publication Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (30) Priority Data: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/272,326 29 December 201 5 (29.
    [Show full text]
  • Powerful Plant Antioxidants: a New Biosustainable Approach to the Production of Rosmarinic Acid
    antioxidants Review Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid Abbas Khojasteh 1 , Mohammad Hossein Mirjalili 2, Miguel Angel Alcalde 1, Rosa M. Cusido 1, Regine Eibl 3 and Javier Palazon 1,* 1 Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; [email protected] (A.K.); [email protected] (M.A.A.); [email protected] (R.M.C.) 2 Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran; [email protected] 3 Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland; [email protected] * Correspondence: [email protected] Received: 19 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources.
    [Show full text]
  • Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources
    molecules Review Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources Francisco Solano Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain; [email protected] Received: 9 March 2020; Accepted: 25 March 2020; Published: 27 March 2020 Abstract: Direct sun exposure is one of the most aggressive factors for human skin. Sun radiation contains a range of the electromagnetic spectrum including UV light. In addition to the stratospheric ozone layer filtering the most harmful UVC, human skin contains a photoprotective pigment called melanin to protect from UVB, UVA, and blue visible light. This pigment is a redox UV-absorbing agent and functions as a shield to prevent direct UV action on the DNA of epidermal cells. In addition, melanin indirectly scavenges reactive oxygenated species (ROS) formed during the UV-inducing oxidative stress on the skin. The amounts of melanin in the skin depend on the phototype. In most phenotypes, endogenous melanin is not enough for full protection, especially in the summertime. Thus, photoprotective molecules should be added to commercial sunscreens. These molecules should show UV-absorbing capacity to complement the intrinsic photoprotection of the cutaneous natural pigment. This review deals with (a) the use of exogenous melanin or melanin-related compounds to mimic endogenous melanin and (b) the use of a number of natural compounds from plants and marine organisms that can act as UV filters and ROS scavengers. These agents have antioxidant properties, but this feature usually is associated to skin-lightening action.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0224164 A1 Lebreton (43) Pub
    US 20110224164A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0224164 A1 Lebreton (43) Pub. Date: Sep. 15, 2011 (54) FLUID COMPOSITIONS FOR IMPROVING Publication Classification SKIN CONDITIONS (51) Int. Cl. (75) Inventor: Pierre F. Lebreton, Annecy (FR) 3G 0.O :08: (73) Assignee: Allergan Industrie, SAS, Pringy (FR) (52) U.S. Cl. .......................................................... 514/54 (21)21) Appl. NoNo.: 12/777,1069 (57) ABSTRACT (22) Filed: May 10, 2010 The present specification discloses fluid compositions com O O prising a matrix polymerand stabilizing component, methods Related U.S. Application Data of making Such fluid compositions, and methods of treating (60) Provisional application No. 61/313,664, filed on Mar. skin conditions in an individual using Such fluid composi 12, 2010. tions. Patent Application Publication Sep. 15, 2011 Sheet 1 of 3 US 2011/0224164 A1 girl is" . .... i E.- &;',EE 3 isre. fire;Sigis's Patent Application Publication Sep. 15, 2011 Sheet 2 of 3 US 2011/0224164 A1 Wiscosity"in a a set g : i?vs. iii.tige: ssp. r. E. site is Patent Application Publication Sep. 15, 2011 Sheet 3 of 3 US 2011/0224164 A1 Fi; ; ; ; , ; i 3 -i-...-- m M mommam mm M. M. MS ' ' s 6. ;:S - - - is : s s: s e 3. 83 8 is is a is É . ; i: ; ------es----- .- mm M. Ma Yum YM Mm - m - -W Mmm-m a 'm m - - - S. 'm - i. So m m 3 - - - - - - - - --- f ; : : ---- ' - - - - - - - - - - - - - - - . : 2. ----------- US 2011/0224164 A1 Sep. 15, 2011 FLUID COMPOSITIONS FOR IMPROVING 0004. The fluid compositions disclosed in the present SKIN CONDITIONS specification achieve this goal.
    [Show full text]
  • In Silico, in Vitro and in Vivo Memory Enhancing Activity
    IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM-INDUCED LEARNING IMPAIRMENT IN MICE Thesis submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai for the award of the degree of DOCTOR OF PHILOSOPHY in PHARMACY Submitted by A. MADESWARAN, M. Pharm., Under the guidance of Dr. K. ASOK KUMAR, M. Pharm., Ph.D. College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore – 641 044, Tamil Nadu, India. JUNE 2017 Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai, for the award of degree of DOCTOR OF PHILOSOPHY in the FACULTY OF PHARMACY was carried out by Mr. A. MADESWARAN, in College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, under my direct supervision and guidance to my fullest satisfaction. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma. Dr. K. Asok Kumar, M.Pharm., Ph.D. Professor & Head, Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, Tamil Nadu - 641 044. Place: Coimbatore – 44. Date: Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr.
    [Show full text]
  • Pharmacological Activity of Eriodictyol: the Major Natural Polyphenolic Flavanone
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 6681352, 11 pages https://doi.org/10.1155/2020/6681352 Review Article Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone Zirong Deng,1 Sabba Hassan,2 Muhammad Rafiq ,2 Hongshui Li,3 Yang He,4 Yi Cai,5 Xi Kang,6 Zhaoguo Liu ,1 and Tingdong Yan 1 1School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China 2Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan 3,e Second People Hospital of Dezhou, Dezhou 253022, China 4BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China 5Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangzhou, Guangdong 511436, China 6Center of Translational Medicine, Chemical Biology Institute, Shenzhen Bay Laboratory, Shenzhen 518132, China Correspondence should be addressed to Muhammad Rafiq; mrafi[email protected], Zhaoguo Liu; [email protected], and Tingdong Yan; [email protected] Received 22 October 2020; Revised 1 December 2020; Accepted 2 December 2020; Published 14 December 2020 Academic Editor: Hua Wu Copyright © 2020 Zirong Deng et al. 1is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eriodictyol is a flavonoid that belongs to a subclass of flavanones and is widespread in citrus
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,359,622 B2 Hilmer Et Al
    US009359.622B2 (12) United States Patent (10) Patent No.: US 9,359,622 B2 Hilmer et al. (45) Date of Patent: Jun. 7, 2016 (54) METHOD FOR BOTECHNOLOGICAL (56) References Cited PRODUCTION OF DIHYDROCHALCONES U.S. PATENT DOCUMENTS (71) Applicant: Symrise AG, Holzminden (DE) 2005/02O8643 A1 9, 2005 Schmidt-Dannert et al. (72) Inventors: Jens Michael Hilmer, Holzminden OTHER PUBLICATIONS (DE); Egon Gross, Holzminden (DE); Chaparro-Riggers et al., Comparison of Three Enoate Reductases Gerhard Krammer, Holzminden (DE); and their Potential Use for Biotransformations, Adv. Synth. Catal. Jakob Peter Ley, Holzminden (DE); 2007, 349, 1521-31.* Mechthild Gall, Greifswald (DE); Uwe Ngaki et al., Evolution of the chalcone-isomerase fold from fatty-acid Bornscheuer, Griefswald (DE); Maren binding to stereospecific catalysis, Nature, May 2012, 485, 530-33 Thomsen, Greifswald (DE); Christin and Supplemental Information.* Peters, Greifswald (DE); Patrick Baldocket al., A Mechanism of Drug Action Revealed by Structural Jonczyk, Hannover (DE); Sascha Studies of Enoyl Reductase, Science, 1996, 274, 2107-10.* Uniprot, Accession No. V9P0A9, 2014. www.uniprot.org.* Beutel, Hannover (DE); Thomas Uniprot, Accession No. V9P074, 2014. www.uniprot.org.* Scheper, Hannover (DE) European Search Report dated Sep. 30, 2013. Schmidt, et al., “Biocatalytic Formation of a Bioactive (73) Assignee: SYMRISE AG, Holzminden (DE) Dihydrochalcone by Eubacterium Ramulus,” Journal of Biotechnol ogy, Elsevier Science Publishers, Amsterdam, NL, B.D. 150, Nov. 1, (*) Notice: Subject to any disclaimer, the term of this 2010, p. 150, XPO27489759. patent is extended or adjusted under 35 Schneider, et al., “Anaerobic Degradation of Flavonoids by U.S.C. 154(b) by 48 days.
    [Show full text]
  • Flavanone: a Versatile Heterocyclic Nucleus
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.5, pp 3160-3178, Aug-Sept 2014 Flavanone: A Versatile Heterocyclic Nucleus Yogesh Murti* and Pradeep Mishra Institute of Pharmaceutical Research, GLA University, Mathura-281406 (U.P.), India *Corres.author: [email protected] Mobile: +91-8006240340, Fax No. +91-5662-241687 Abstract: The chemistry of heterocyclic compounds has been an interesting field of study for a long time. The present review article highlights different synthetic approaches to synthesize flavanone nucleus, natural and synthetic flavanones as well as recently synthesized flavanone possessing important biological activities. It was found that among the important pharmacophores responsible for various activities, flavanone also plays an important role in various medicines. Keywords: Chalcone, Flavanone, Heterocyclic compounds, Natural Flavanone, Synthetic flavanone, Biological activity. Introduction Flavonoids are extensive group of compounds occurring in plants. They are prominent plant secondary metabolites that have been found in dietary components including fruits, vegetables, olive oil, tea, and red wine. It has been observed that even a high take of plant based dietary flavonoids is safe and not associated with any adverse health effect. The basic flavanoid structure is a flavone nucleus, In nature, they are available as flavone, flavonol, flavanone, isoflavone, chalcone and their derivatives[1]. Figure 1: Molecular structure of the flavone backbone (2-Phenyl-1,4-benzopyrone
    [Show full text]
  • Playing Hide and Seek with Poorly Tasting Paediatric Medicines: Do Not Forget the Excipients☆
    Advanced Drug Delivery Reviews 73 (2014) 14–33 Contents lists available at ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr Playing hide and seek with poorly tasting paediatric medicines: Do not forget the excipients☆ Jennifer Walsh a,⁎,AnneCramb,KatharinaWoertzc, Joerg Breitkreutz c, Gesine Winzenburg d, Roy Turner d, Catherine Tuleu e, On behalf of the European Formulation Initiative (EuPFI) a Jenny Walsh Consulting Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, United Kingdom b Drug Product Development, Pfizer Ltd, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom c Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Duesseldorf, Building 26.22, Universitaetsstrasse 1,40225 Duesseldorf, Germany d Novartis Pharma AG, Postfach, CH-4002 Basel, Switzerland e Centre for Paediatric Pharmacy Research, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom article info abstract Available online 12 March 2014 The development of paediatric medicines can be challenging since this is a diverse patient population with specific needs. For example, the toxicity of excipients may differ in children compared to adults and children Keywords: have different taste preferences. Acceptable palatability of oral paediatric medicinal products is of great Paediatric importance to facilitate patient adherence. This has been recognised by regulatory authorities and so is becoming Taste masking a key aspect of paediatric pharmaceutical development studies. Many active pharmaceutical ingredients (APIs) Formulation have aversive taste characteristics and so it is necessary to utilise taste masking techniques to improve the Palatability palatability of paediatric oral formulations. The aim of this review is to provide an overview of different Dosage form Excipient approaches to taste masking APIs in paediatric oral dosage forms, with a focus on the tolerability of excipients used.
    [Show full text]