(12) United States Patent (10) Patent No.: US 9,359,622 B2 Hilmer Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,359,622 B2 Hilmer Et Al US009359.622B2 (12) United States Patent (10) Patent No.: US 9,359,622 B2 Hilmer et al. (45) Date of Patent: Jun. 7, 2016 (54) METHOD FOR BOTECHNOLOGICAL (56) References Cited PRODUCTION OF DIHYDROCHALCONES U.S. PATENT DOCUMENTS (71) Applicant: Symrise AG, Holzminden (DE) 2005/02O8643 A1 9, 2005 Schmidt-Dannert et al. (72) Inventors: Jens Michael Hilmer, Holzminden OTHER PUBLICATIONS (DE); Egon Gross, Holzminden (DE); Chaparro-Riggers et al., Comparison of Three Enoate Reductases Gerhard Krammer, Holzminden (DE); and their Potential Use for Biotransformations, Adv. Synth. Catal. Jakob Peter Ley, Holzminden (DE); 2007, 349, 1521-31.* Mechthild Gall, Greifswald (DE); Uwe Ngaki et al., Evolution of the chalcone-isomerase fold from fatty-acid Bornscheuer, Griefswald (DE); Maren binding to stereospecific catalysis, Nature, May 2012, 485, 530-33 Thomsen, Greifswald (DE); Christin and Supplemental Information.* Peters, Greifswald (DE); Patrick Baldocket al., A Mechanism of Drug Action Revealed by Structural Jonczyk, Hannover (DE); Sascha Studies of Enoyl Reductase, Science, 1996, 274, 2107-10.* Uniprot, Accession No. V9P0A9, 2014. www.uniprot.org.* Beutel, Hannover (DE); Thomas Uniprot, Accession No. V9P074, 2014. www.uniprot.org.* Scheper, Hannover (DE) European Search Report dated Sep. 30, 2013. Schmidt, et al., “Biocatalytic Formation of a Bioactive (73) Assignee: SYMRISE AG, Holzminden (DE) Dihydrochalcone by Eubacterium Ramulus,” Journal of Biotechnol ogy, Elsevier Science Publishers, Amsterdam, NL, B.D. 150, Nov. 1, (*) Notice: Subject to any disclaimer, the term of this 2010, p. 150, XPO27489759. patent is extended or adjusted under 35 Schneider, et al., “Anaerobic Degradation of Flavonoids by U.S.C. 154(b) by 48 days. Eubacterium Ramulus.” Archives of Microbiology, Springer, DE, Bd. 173, Nr. 1, Jan. 1, 2000, pp. 71-75, XP008115183. (21) Appl. No.: 13/954,957 Herles, et al., “First Bacterial Chalcone Isomerase isolated from Eubacterium Ramulus.” Archives of Microbiology, Bd. 181, Nr. 6. (22) Filed: Jul. 30, 2013 Jun. 2004, pp. 428-434, XP002713878. Hwang, et al., “Production of Plant-Specific Flavonones by Prior Publication Data Escherichia coli Containing an Artificial Gene Cluster.” Applied and (65) Environmental Microbiology, American Society for Microbiology, US 2014/OO45233 A1 Feb. 13, 2014 US, Bd. 69, Nr. 5, May 1, 2003, pp. 2699-2706, XP008117399. Databse UniProt, Feb. 1, 1995, “RecName: Full=Chalcone (30) Foreign Application Priority Data flavonone isomerase 1: Short=Chalcone isomerase 1; EC=5.5.1.6; AltName: Full=Protein Transparent Testa 5.” XP002713879. Jul. 31, 2012 (DE) ......................... 10 2012 213 492 * cited by examiner (51) Int. C. CI2P 7/26 (2006.01) Primary Examiner — Robert Mondesi CI2N L/21 (2006.01) Assistant Examiner — Todd M Epstein CI2N 9/02 (2006.01) (74) Attorney, Agent, or Firm — Polsinelli PC CI2N 9/90 (2006.01) CI2N 15/53 (2006.01) (57) ABSTRACT CI2N I5/6 (2006.01) A method for production of a dihydrochalcone, especially of CI2N 15/63 (2006.01) phloretin, using a transgenic microorganism, containing a CI2R I/OI (2006.01) nucleic acid section (a), comprising or consisting of a gene CI2R L/19 (2006.01) coding for a bacterial chalcone isomerase, and/or a nucleic CI2R L/645 (2006.01) acid section (a'), comprising or consisting of a gene coding for CI2R L/865 (2006.01) a plant chalcone isomerase, and a nucleic acid section (b). CI2R L/84 (2006.01) comprising or consisting of a gene coding for a bacterial (52) U.S. C. enoate reductase, corresponding transgenic microorganisms, CPC. CI2P 7/26 (2013.01): CI2N 9/001 (2013.01); containing a nucleic acid section (a), comprising or consisting CI2N 9/90 (2013.01); CI2R I/01 (2013.01); of a gene coding for a bacterial chalcone isomerase, and/or a CI2R 1/19 (2013.01): CI2R I/645 (2013.01); nucleic acid section (a'), comprising or consisting of a gene CI2R 1/84 (2013.01): CI2R 1/865 (2013.01); coding for a plant chalcone isomerase, and/or a nucleic acid CI2Y 103/0.1031 (2013.01); C12Y505/01006 section (b), comprising or consisting of a gene coding for a (2013.01); Y02P 20/52 (2015.11) bacterial enoate reductase, and host cells, containing one or (58) Field of Classification Search more identical or different such vectors. None See application file for complete search history. 39 Claims, 6 Drawing Sheets U.S. Patent Jun. 7, 2016 Sheet 1 of 6 US 9,359,622 B2 Figure U.S. Patent Jun. 7, 2016 Sheet 2 of 6 US 9,359,622 B2 ::::::: 38:8; 3. of 3:38. Figure 2 U.S. Patent Jun. 7, 2016 Sheet 3 of 6 US 9,359,622 B2 3arri (98) sERED pE-238(+) 340 Figure 3 U.S. Patent Jun. 7, 2016 Sheet 4 of 6 US 9,359,622 B2 388x3 Figure 4 U.S. Patent Jun. 7, 2016 Sheet 5 of 6 US 9,359,622 B2 R. EAE - C - Resource ( R EAE - C - Resote: { extak G F Pic SOS-Page der Affeinigung SOS-Page der Aufreinigung {gefärbi mit Coomassie Bluie igefartt imit Siber) Figure 5 U.S. Patent Jun. 7, 2016 Sheet 6 of 6 US 9,359,622 B2 -8- Naringenin -- HPP-8- Phloretin-8- OD :400 16 40 350 i - 4-a-a-? - -8-Y. 4 35 300 2 30 s E. a > 250 10 25 s st w s : 5 200 0.8 2O s & S. 8x S 50 06 S2 15 a. S s wr 2. 2 OO O4 C O s s h SO 0.2 5 () O,t) ) Zeith Figure 6 US 9,359,622 B2 1. 2 METHOD FOR BOTECHNOLOGICAL Further aspects of the present invention and preferred con PRODUCTION OF DIHYDROCHALCONES figurations thereof can be seen from the following descrip tion, the exemplary embodiments and the claims. CROSS-REFERENCE TO RELATED APPLICATIONS BRIEF DESCRIPTION OF THE DRAWINGS This application claims the benefit of DE Patent Applica FIG. 1: Plasmid pET52b EREDstrep for heterologous tion Serial No. 10 2012 213 492.1, filed on 31 Jul. 2012, the expression and characterization of the ERED from E. ramu benefit of the earlier filing date of which is hereby claimed lus DSM 16296; under 35 USC S119(a)-(d) and (f). The application is hereby FIG. 2: Plasmid plT28b CHI for heterologous expression incorporated in its entirety as if fully set forth herein. 10 and characterization of the CHI from E. ramulus DSM 16296; FIG. 3: Plasmid pET22b ERED for heterologous expres SUBMISSION OF SEQUENCE LISTING sion and characterization of the ERED from E. ramulus DSM 16296; The Sequence Listing associated with this application is FIG. 4 is a graph showing lines representing without cell filed in electronic format via EFS-Web and hereby incorpo 15 extract, with cell extract E. coli Rosetta (without plasmid), rated by reference into the specification in its entirety. The and with cell extract E. coli Rosetta (with pBT28 HI); name of the text file containing the Sequence Listing is Sub FIG. 5 provides examples of the results of the individual stitute Sequence Listing 34430 7. The size of the text file is purification steps following expression of the vector 22 KB, and the text file was created on Dec. 3, 2015. pET28b CHI in E. coli; and FIG. 6 is a graph of Naringenin/HPP/Concentration uM BACKGROUND OF THE INVENTION against Phloretin concentration uM over time h. 1. Field of the Invention DETAILED DESCRIPTION OF THE PREFERRED The present invention primarily concerns a method for EMBODIMENTS production of a dihydrochalcone, especially of phloretin, or a 25 To facilitate an understanding of the principles and features method for reduction of flavanones using a transgenic micro of the various embodiments of the invention, various illustra organism, containing a nucleic acid section (a), comprising or tive embodiments are explained below. Although exemplary consisting of a gene coding for a bacterial chalcone embodiments of the invention are explained in detail, it is to isomerase, and/or a nucleic acid section (a'), comprising or be understood that other embodiments are contemplated. consisting of a gene coding for a plant chalcone isomerase, 30 Accordingly, it is not intended that the invention is limited in and a nucleic acid section (b), comprising or consisting of a its scope to the details of construction and arrangement of gene coding for a bacterial enoate reductase. components set forth in the following description or illus 2. Description of Related Art trated in the drawings. The invention is capable of other Dihydrochalcones, especially phloretin, are normally pro embodiments and of being practiced or carried out in various duced either by chemical reduction of chalcones or by 35 ways. Also, in describing the exemplary embodiments, spe Friedel–Crafts acylation of phenols with dihydrocinammic cific terminology will be resorted to for the sake of clarity. acids. The disadvantage of this method is that food additives, It must also be noted that, as used in the specification and flavourings or aromatic Substances produced in this way can the appended claims, the singular forms “a,” “an and “the not be described as natural. In addition, dihydrochalcones, include plural references unless the context clearly dictates especially phloretin, can be obtained by extraction of for 40 otherwise. For example, reference to a component is intended example the corresponding glycoside (E.g. from Malus spp. also to include composition of a plurality of components. raw materials) with Subsequent generation of the aglycone. References to a composition containing “a” constituent is This process is time-consuming and cost-intensive, however, intended to include other constituents in addition to the one named. and is also dependent on the season. Also, in describing the exemplary embodiments, terminol Important flavourings and aromatic Substances with a dihy 45 ogy will be resorted to for the sake of clarity.
Recommended publications
  • Genes Involved in Virulence of the Entomopathogenic Fungus Beauveria Bassiana Chapter 3
    A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes Claudio A. Valero Jiménez Thesis committee Promotors Prof. Dr B.J. Zwaan Professor of Genetics Wageningen University Prof. Dr W. Takken Personal chair at the Laboratory of Entomology Wageningen University Co-promotors Dr. C.J.M. Koenraadt Assistant professor, Laboratory of Entomology Wageningen University Dr. J.A.L. van Kan Assistant professor, Laboratory of Phytopathology Wageningen University Other members Prof. Dr M.E. Schranz, Wageningen University Dr V.I.D. Ros, Wageningen University Dr M. Rep, University of Amsterdam Prof. Dr J. Eilenberg, University of Copenhagen, Denmark This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes Claudio A. Valero Jiménez Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 21 September 2016 at 4 p.m. in the Aula. Claudio A. Valero Jiménez A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes. 131 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in
    [Show full text]
  • Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An in Silico Study
    nutrients Article Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An In Silico Study Tobias Goris 1,* , Rafael R. C. Cuadrat 2 and Annett Braune 1 1 Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] 2 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] * Correspondence: [email protected] Abstract: Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackia isoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria.
    [Show full text]
  • Chromanone-A Prerogative Therapeutic Scaffold: an Overview
    Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-021-05858-3 REVIEW-CHEMISTRY Chromanone‑A Prerogative Therapeutic Scafold: An Overview Sonia Kamboj1,2 · Randhir Singh1 Received: 28 September 2020 / Accepted: 9 June 2021 © King Fahd University of Petroleum & Minerals 2021 Abstract Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor diference from chromone but exhibits signifcant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman- 4-one analogues are addressed to signify the importance of chromanone as a versatile scafold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most efective and cost-efective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development. Keywords Chroman-4-one · Chromone · Pharmacological activity · Synthesis · Analogues 1 Introduction dihydropyran (ring B) which relates to chromane, chromene, chromone and chromenone, but the absence of C2-C3 dou- Chroman-4-one is one of the most important heterobicyclic ble bond of chroman-4-one skeleton makes a minor difer- moieties existing in natural compounds as polyphenols and ence (Table 1) from chromone and associated with diverse as synthetic compounds like Taxifolin, also known as chro- biological activities [1].
    [Show full text]
  • Gut-Derived Flavonifractor Species Variants Are Differentially Enriched
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.890848; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Gut-derived Flavonifractor species variants are 2 differentially enriched during in vitro incubation with 3 quercetin 4 Short Title: Flavonifractor species variants are differentially enriched during incubation with 5 quercetin 6 Gina Paola Rodriguez-Castaño 1*, Federico E. Rey2, Alejandro Caro-Quintero3, Alejandro 7 Acosta-González1 8 1 Engineering Department, La Sabana University, Chia, Colombia 9 2 Department of Bacteriology, University of Wisconsin-Madison, USA 10 3 AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia. 11 * Correspondence: 12 Gina Paola Rodriguez-Castaño 13 [email protected] (GRC) 14 15 Abstract 16 Flavonoids are a common component of the human diet with widely reported health- 17 promoting properties. The gut microbiota transforms these compounds affecting the overall 18 metabolic outcome of their consumption. Flavonoid-degrading bacteria are often studied in 19 isolation under culture conditions that do not resemble the conditions in the colon and that bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.890848; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Bioavailability and Metabolic Pathway of Phenolic Compounds Muhammad Bilal Hussain, Sadia Hassan, Marwa Waheed, Ahsan Javed, Muhammad Adil Farooq and Ali Tahir
    Chapter Bioavailability and Metabolic Pathway of Phenolic Compounds Muhammad Bilal Hussain, Sadia Hassan, Marwa Waheed, Ahsan Javed, Muhammad Adil Farooq and Ali Tahir Abstract As potential agents for preventing different oxidative stress-related diseases, phenolic compounds have attracted increasing attention with the passage of time. Intake of fruits, vegetables and cereals in higher quantities is linked with decreased chances of chronic diseases. In plant-based foods, phenolic com- pounds are very abundant. However, bio-accessibility and biotransformation of phenolic compound are not reviewed in these studies; therefore, a detailed action mechanism of phenolic compounds is not recognized. In this article, inclusive concept of different factors affecting the bioavailability of phenolic compounds and their metabolic processes is presented through which phenolic compounds go after ingestion. Keywords: polyphenols, bioavailability, biotransformation, metabolism 1. Introduction In recent past, the awareness of the consumer related to the effect of diet on the health has been improved; therefore, leading to upsurge in the con- sumption of vegetables, cereal based foods and fruits. Numerous studies have suggested the bioactive characteristics of the bioactive moieties, i.e., phenolic compounds. Nonetheless, bioactive claims are made without taking into consid- eration the further modifications to which phenolic compounds are subjected once ingested [1]. Phenolic compounds are the secondary metabolites of plants which consti- tute an important group, i.e., phenylpropanoids. These compounds possess an aromatic ring and various OH groups which are link to it. On the basis of clas- sification, phenolic compounds are prorated into various subgroups. They are grouped as a function of the number of phenolic rings that they contain and the radicals that bind these rings to another one [2, 3].
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur Et Al
    USOO89628OOB2 (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur et al. (45) Date of Patent: Feb. 24, 2015 (54) NUCLEICACIDS AND PROTEINS AND USPC .......................................................... 530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Naperville, IL (US) PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Nolling etal (J. Bacteriol. 183: 4823 (2001).* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 0 days. Isolates of Pseudomonas aeruginosa J. Bacteriol. (2003) 185: 1316-1325. (21) Appl. No.: 13/400,365 2002.Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (22) Filed: Feb. 20, 2012 bor New York, 2001, pp. 382-393. O O Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (65) Prior Publication Data toxicology” Toxicol. Lett. (2000) 1.12: 365-370. US 2012/O266329 A1 Oct. 18, 2012 * cited by examiner Related U.S. Application Data - - - Primary Examiner — James Martinell (62) Division of application No. 1 1/817,403, filed as (74) Attorney, Agent, or Firm — DLA Piper LLP (US) application No. PCT/US2006/007642 on Mar. 3, 2006, now Pat. No. 8,119,385. (57) ABSTRACT (60) Provisional application No. 60/658,984, filed on Mar. The invention provides polypeptides, including enzymes, 4, 2005.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen Et Al
    US010538797B2 United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen et al. (45 ) Date of Patent : Jan. 21 , 2020 (54 ) METHOD FOR THE BIOTECHNOLOGICAL ( 56 ) References Cited PRODUCTION OF FLAVONE GLYCOSIDE DIHYDROCHALCONES U.S. PATENT DOCUMENTS 9,359,622 B2 * 6/2016 Hilmer C12Y 505/01006 (71 ) Applicant: SYMRISE AG , Holzminden (DE ) 2014/0045233 A1 * 2/2014 Hilmer C12Y 505/01006 435/148 ( 72 ) Inventors : Maren Thomsen , Greifswald (DE ) ; Jakob Ley , Holzminden ( DE ) ; Egon FOREIGN PATENT DOCUMENTS Gross , Holzminden (DE ); Winfried Hinrichs , Greifswald (DE ) ; Uwe EP 2 692 729 A1 2/2014 Bornscheuer, Greifswald (DE ) OTHER PUBLICATIONS ( 73 ) Assignee : SYMRISE AG , Holzminden (DE ) Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 2 ( Year: 2014 ). * ( * ) Notice : Subject to any disclaimer, the term of this Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 4 ( Year: 2014 ). * patent is extended or adjusted under 35 Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 1 . U.S.C. 154 ( b ) by 16 days . ( Year: 2013 ) . * Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 3 . ( 21 ) Appl. No.: 15 /322,768 ( Year : 2013 ) . * Chica et al. Curr Opin Biotechnol . Aug. 2005; 16 ( 4 ): 378-84 . ( Year : 2005 ) . * ( 22 ) PCT Filed : Jun . 27 , 2015 Singh et al . Curr Protein Pept Sci. 2017 , 18 , 1-11 ( Year: 2017) . * Bornscheuer et al. Curr Protoc Protein Sci. Nov. 2011; Chapter PCT No .: PCT/ EP2015 / 064626 26 :Unit26.7 . ( Year: 2011 ). * ( 86 ) Gall et al, “ Enzymatische Umsetzung von Flavonoiden mit einer $ 371 ( c ) ( 1 ) , backteriellen Chalconisomerase und einer Enoatreduktase ,” Angewandte ( 2 ) Date : Apr.
    [Show full text]
  • A Role for the Hydroxybenzoic Acid Metabolites of Flavonoids And
    A ROLE FOR THE HYDROXYBENZOIC ACID METABOLITES OF FLAVONOIDS AND ASPIRIN IN THE PREVENTION OF COLORECTAL CANCER BY RANJINI SANKARANARAYANAN A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Pharmaceutical Sciences South Dakota State University 2021 ii DISSERTATION ACCEPTANCE PAGE Ranjini Sankaranarayanan This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Gunaje Jayarama, A00137123 Advisor Date Omathanu Perumal Department Head Date Nicole Lounsbery, PhD Director, Graduate School Date iii ACKNOWLEDGEMENTS The completion of this work would not have been possible without the help and contribution of various people who have in their own kind way supported its accomplishment. I would like to express my heart-felt gratitude to my mentor Dr. Jayarama Bhat Gunaje for having skillfully guided me through this project and for having generously extended his support throughout. Dr. Jay has taught me invaluable lessons about honesty, integrity, and listening to your data when it comes to scientific research. He has always been a pillar of support and has also been kind in sharing his many experiences to help me both professionally and personally. I thank him for this. These four years that I spent in the lab with him will be time I will fondly remember and cherish forever. I would like to thank Dr. Joy Scaria (Department of Veterinary & Biomedical Sciences, SDSU) and Dr.
    [Show full text]
  • AVANCES EN ALIMENTACION FUNCIONAL.Pdf
    2 AVANCES EN LA INVESTIGACIÓN DE LA ALIMENTACIÓN FUNCIONAL ANEXO:IJornada CYTEDIBEROFUNSOBRE ALIMENTACIÓNSALUD MEXICO2010 Editor:F.JavierFontechaAlonso 32-0#1S T 4'#0 -,2#!& *-,1-Q 3'1 T -"0\%3#8V*!*:Q 0\ '1'2!', !*4-Q 0\ ,2-,' '**0V "("30Q0\"#*$'*0!120-V%+#8Q 0,!'1!'-*%"-Q,3#* 3:0#8Q #"#0'!- 0Q(#0',!+',-Q)1!0 *T $M0#8Q ,0', -T 02',#8 7 , $'*-1-$Q 4-, 0218#51)'Q 0',Q 02\,#8Q 0\ TQ $'8-,#1 3'8V '#,#120-1Q\!2-0SQ 0\1Q0\*Q0'1\'#0,:,"#80:+,-Q -1M'!#,2#'#0,:,"#8)02'8Q,%M*'!+-1 $3# *Q *", 0,2-1 *1.08Q '0'+ 0,!- 64*#2Q /3#* %0!\ 800'#,2-1Q 91 #* %3#00#0- #%00#2Q :!&'2*%38+:,%0!\Q0'"#0#18#02-*"-$!&#!-Q.0#!'"0,'"#0-38Q#00,'(3,#1"0'*4Q 008#,#"MQ**#,-*',QTT"30#'0QTT$'+#,2#*QT0'*4%'<-Q T:T*!2QTT$T%-+#1QTT*T $',2"-Q "#0#1 #/3#,Q /3#* " 1!-Q 0\ -,%1Q T =,%#*#1 $-8-V87,Q #0,,"- 0:,!&#8V$2:,Q $#"0- T 02\,V=*40#8Q 8#%- 802-*-+MQ -1 "#* !+.-Q T !0+#, 02\,#8V!3#12Q !0+#, $#*:#8Q T '!2-0' -0#,-V00' 1Q !04*&-Q T*TR #,"0+'V!-12Q -T8TR -,2#'0-Q ,TTR $-11#,2'Q TR "',2'Q 0TTR 3'8Q TT"T%TQ0*4"-0#%7#,Q#7%32'M00#8"-*#,2',-Q02(T!-0-,"-'#00#0Q -1M #1'1$M0#8%-,8:*#8Q 0\ "# -30"#1 +\0#8 #%Q #,'"#1 #0,:,"#8Q *12&#0 '+M,#8Q '0%',' 02\,Q # #! 00-7-Q 02 %+#8Q0\0\,Q 3,'%3#*-"0\%3#8Q -1MT$M0#8V=*40#8Q,3#*'3"V02-1Q**#,0:,!&#8V6.2Q , 02',V0:,!&#8Q A-*," 3'8V(4(1Q 3, #0,:,"#8V.#8Q *120#** 071V80 #0:Q !1'*" (400-Q *12&#0 0#,"0Q T T -"0\%3#8 $2',-Q 0T T -"0\%3#8 (' -Q !T !00#0 0:,!&#8Q -,2'**Q TQ -0#,-Q T TQ '**+'#* TQ )*,-Q TQ !-08-Q (TQ T TT 0#1+Q TT %3'*#0Q T *1!- 0V#"',Q TT 9%*#1'1V80!'Q T 8**%3#0+,,QT T3'8V!-*:,Q-T$T #00#'0"#*+#'"T ISBN:9788469023895 3 4 ÍNDICE GENERAL Agradecimientos Introducción …..………………………………………………………….…………….……………….….9 Capítulo 1.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Structural and Biochemical Characterization of the Dual Substrate Recognition of the (R)-Selective Amine Transaminase from Aspergillus Fumigatus
    Struktur und Funktion der ersten bakteriellen Chalconisomerase und einer (R)-selektiven Amin-Transaminase I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Maren Thomsen geboren am 23.01.1988 in Itzehoe Greifswald, Dezember 2014 Dekan: Prof. Dr. Klaus Fesser 1. Gutachter: Prof. Dr. Winfried Hinrichs 2. Gutachter: Prof. Dr. Norbert Sträter Tag der Promotion: 25. Februar 2015 Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Einleitung 1 2. Einleitung zu Chalconisomerasen 2 2.1 Flavonoide 2 2.2 Pflanzliche Chalconisomerasen 3 2.3 Reaktionsmechanismus der pflanzlichen Chalconisomerasen 5 2.4 Degradation der Flavonoide durch die intestinale Mikroflora 6 3. Ergebnisse zur Chalconisomerase aus Eubacterium ramulus 8 3.1 De novo Strukturlösung der bakteriellen CHI mittels SIRAS 8 3.2 Strukturanalyse der bakteriellen CHI aus E. ramulus 8 3.3 Aktives Zentrum und Reaktionsmechanismus 9 3.4 Bedeutung des Lids für die bakterielle CHI 10 3.5 Suche nach Faltungshomologen zur bakteriellen CHI 11 4. Einleitung zu (R)-selektiven Amin-Transaminasen 13 5. Ergebnisse zur (R)-selektiven Amin-Transaminase aus Aspergillus fumigatus 18 5.1 Kristallisation und Röntgendiffraktion der (R)-selektiven Amin-Transaminase 18 5.2 Strukturanalyse der (R)-selektiven Amin-Transaminase 18 5.3 Untersuchungen zur dualen Substraterkennung der (R)-selektiven Amin- Transaminase 20 6. Literatur 22 7. Publikationsliste 28 Einleitung 1. Einleitung Proteine können eine Vielzahl an unterschiedlichen Funktionen ausüben. Darunter fallen Aufgaben wie die Übernahme von Stützfunktionen zum Aufbau des Zytoskeletts, andere übernehmen Transportprozesse und vermitteln den gerichteten Stofftransport in der Zelle.
    [Show full text]