AVANCES EN ALIMENTACION FUNCIONAL.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

AVANCES EN ALIMENTACION FUNCIONAL.Pdf 2 AVANCES EN LA INVESTIGACIÓN DE LA ALIMENTACIÓN FUNCIONAL ANEXO:IJornada CYTEDIBEROFUNSOBRE ALIMENTACIÓNSALUD MEXICO2010 Editor:F.JavierFontechaAlonso 32-0#1S T 4'#0 -,2#!& *-,1-Q 3'1 T -"0\%3#8V*!*:Q 0\ '1'2!', !*4-Q 0\ ,2-,' '**0V "("30Q0\"#*$'*0!120-V%+#8Q 0,!'1!'-*%"-Q,3#* 3:0#8Q #"#0'!- 0Q(#0',!+',-Q)1!0 *T $M0#8Q ,0', -T 02',#8 7 , $'*-1-$Q 4-, 0218#51)'Q 0',Q 02\,#8Q 0\ TQ $'8-,#1 3'8V '#,#120-1Q\!2-0SQ 0\1Q0\*Q0'1\'#0,:,"#80:+,-Q -1M'!#,2#'#0,:,"#8)02'8Q,%M*'!+-1 $3# *Q *", 0,2-1 *1.08Q '0'+ 0,!- 64*#2Q /3#* %0!\ 800'#,2-1Q 91 #* %3#00#0- #%00#2Q :!&'2*%38+:,%0!\Q0'"#0#18#02-*"-$!&#!-Q.0#!'"0,'"#0-38Q#00,'(3,#1"0'*4Q 008#,#"MQ**#,-*',QTT"30#'0QTT$'+#,2#*QT0'*4%'<-Q T:T*!2QTT$T%-+#1QTT*T $',2"-Q "#0#1 #/3#,Q /3#* " 1!-Q 0\ -,%1Q T =,%#*#1 $-8-V87,Q #0,,"- 0:,!&#8V$2:,Q $#"0- T 02\,V=*40#8Q 8#%- 802-*-+MQ -1 "#* !+.-Q T !0+#, 02\,#8V!3#12Q !0+#, $#*:#8Q T '!2-0' -0#,-V00' 1Q !04*&-Q T*TR #,"0+'V!-12Q -T8TR -,2#'0-Q ,TTR $-11#,2'Q TR "',2'Q 0TTR 3'8Q TT"T%TQ0*4"-0#%7#,Q#7%32'M00#8"-*#,2',-Q02(T!-0-,"-'#00#0Q -1M #1'1$M0#8%-,8:*#8Q 0\ "# -30"#1 +\0#8 #%Q #,'"#1 #0,:,"#8Q *12&#0 '+M,#8Q '0%',' 02\,Q # #! 00-7-Q 02 %+#8Q0\0\,Q 3,'%3#*-"0\%3#8Q -1MT$M0#8V=*40#8Q,3#*'3"V02-1Q**#,0:,!&#8V6.2Q , 02',V0:,!&#8Q A-*," 3'8V(4(1Q 3, #0,:,"#8V.#8Q *120#** 071V80 #0:Q !1'*" (400-Q *12&#0 0#,"0Q T T -"0\%3#8 $2',-Q 0T T -"0\%3#8 (' -Q !T !00#0 0:,!&#8Q -,2'**Q TQ -0#,-Q T TQ '**+'#* TQ )*,-Q TQ !-08-Q (TQ T TT 0#1+Q TT %3'*#0Q T *1!- 0V#"',Q TT 9%*#1'1V80!'Q T 8**%3#0+,,QT T3'8V!-*:,Q-T$T #00#'0"#*+#'"T ISBN:9788469023895 3 4 ÍNDICE GENERAL Agradecimientos Introducción …..………………………………………………………….…………….……………….….9 Capítulo 1. Lípidos bioactivos en productos lácteos. ………………………………………….....11 Luis M. Rodríguez-Alcalá, María Visitación Calvo, María Antonia Villar-Tajadura, María del Pilar Castro-Gómez, Francisca Holgado, Manuela Juárez y Javier Fontecha. Capítulo 2. Hidroxipropilmetilcelulosa como vehículo de encapsulación de ….…………..…23 compuestos bioactivos. Federico Jara, Nerina Camino, Oscar E. Pérez, Karina D. Martinez y Ana MR Pilosof. Capítulo 3. Impacto de la incorporación de componentes bioactivos………………………….35 en matrices proteicas. von Staszewski, Mariana, Martínez, María J., Pizones Ruiz-Henestrosa, Víctor M1, Farías, María E. & Pilosof, Ana M. R. Capítulo 4. Biomateriales de mares mexicanos. …..…………….………………………………...43 Arisaí Hernández Sámano, José Vicente Hernández Ortiz, Angélica Ramos Puebla, Edna Santos Esparza, Miriam Franco Zavaleta, Raquel García Barrientos, Isabel Guerrero Legarreta. Xóchitl Guzmán García Capítulo 5. Componentes funcionales presentes en el suero lácteo. ….……….……………...51 Maria Teresa Bertoldo Pacheco, Aparecida Sônia de Souza, Vera Sônia Nunes da Silva Capítulo 6. Efecto de los procesos tecnológicos en la alergenicidad de la leche. ….……….63 Sara Benedé y Elena Molina Capítulo 7. Ingredientes Funcionales: Obtención, bioactividad,…………………………………73 biodisponibilidad y seguridad. A. R. Madureira, L. L. Pimentel, M. Silva Gião, F. X. Malcata, A. M. P. Gomes, M. M. E. Pintado Capítulo 8. Polifenoles del vino y microbiota humana: modulación y metabolismo. ……….83 Teresa Requena, Raquel Tabasco, María Monagas, M. Ángeles Pozo-Bayón, Fernando Sánchez-Patán, Pedro J. Martín-Álvarez, Begoña Bartolomé, Rosa del Campo, M. Carmen Martínez-Cuesta, Carmen Peláez y M. Victoria Moreno-Arribas Capítulo 9. Atividade anticâncer de extratos e princípios ativos..............................................91 obtidos de produtos naturais. Carvalho, J.E.; Vendrami-Costa, D.B.; Monteiro, K.M.; Possenti, A.; Tinti, S.V.; Ruiz, A.L.T.G. Capítulo 10. Adición de aceite de chía (Salvia hispanica) como …..….………………………101 fuente de ácidos grasos omega 3 en chorizo. Salvador Vega y León, Rey Gutiérrez Tolentino, Marta N. Coronado Herrera, José Jesús Pérez González, María de Lourdes Ramírez Vega Capítulo 11. La leche humana: una fuente de bacterias para el intestino infantil. …………109 Leónides Fernández, Esther Jiménez, Virginia Martín, Rebeca Arroyo, Marta Gómez, María Marín, Juan Miguel Rodríguez. 5 ÍNDICE GENERAL Capítulo 12. Compuestos bioactivos de los co-productos cítricos y su.………………….…115 aplicación en la industria cárnica. Reducción del nitrito residual. José A. Pérez-Álvarez, Manuel Viuda-Martos, Elena Sánchez-Zapata, Ana Martin-Sánchez, Yolanda Ruiz-Navajas, Juana Fernández-López, Estrella Sayas-Barberá, Casilda Navarro, Esther Sendra. Capítulo 13. Aprovechamiento de co-productos procedentes de las industrias. .………….125 Agroalimentarias. Obtención de fibra dietética. José A. Pérez-Álvarez, Manuel Viuda-Martos, Elena Sánchez-Zapata, Ana Martin-Sánchez, Yolanda Ruiz-Navajas, Juana Fernández-López, Estrella Sayas-Barberá, Casilda Navarro, Esther Sendra. Capítulo 14. Valorización de subproductos agroalimentarios para su ………………...……..135 uso en formulaciones de dispersiones alimentarias. J. M. Rodríguez Patino, Mª. R. Rodríguez Niño y C. Carrera Sánchez Capítulo 15. Obtención de ingredientes alimenticios de carácter prebiótico. .……….……..145 Montilla, A., Moreno, F. J., Villamiel M., Olano, A., Corzo, N. ANEXO RESUMENES DE LAS JORNADAS: “ALIMENTACION Y SALUD” Proyecto CYTED Iberofun. ref: 110ac0386. “Incorporación de nuevos ingredientes funcionales a alimentos como contribución a la promoción de la salud y/o a la prevención de enfermedades de la población iberoamericana”. …..…………………………………………...149 J. Fontecha; A.M.R. Pilosof; F.J.M. Sesma; M.T. Bertoldo; J.E. Carvalho; J.M. Aguilera; A. Escobar-Medina; E. Molina; J.M. Rodríguez-Gómez; M. Villamiel; J.M. Rodríguez-Patino; J.A. Pérez-Álvarez; I. Guerreo-Legarreta; S. Vega y León; M.M. Pintado; J.R. Iglesias-Barcia; F. Blüguermann; A.J. Ruiz-Colán; D. P. Ferreira de Almeida Lípidos bioactivos en alimentos con especial atención a los productos lácteos. …………156 Javier Fontecha Alonso. Comportamiento del péptido bioactivo caseinomacropéptido en la escala nano y su impacto en la macroestructura de coloides alimentarios funcionales……………….157 Ana M. R. Pilosof Biomateriales de mares mexicanos. ….…………………………...……………………………….158 Isabel Guerrero Legarreta Componentes funcionales presentes en suero lácteo. …..……………..………………………159 Maria Teresa Bertoldo Pacheco. Diseño de estructuras alimentarias. ..……………………….……………………………………...160 José Miguel Aguilera Radic. 6 ÍNDICE GENERAL Producción de vitaminas del grupo b por bacterias lácticas y su importancia en el diseño de nuevos alimentos funcionales. ………………………………………..……………….161 Fernando J. M. Sesma. Bioactividad y alergenicidad de proteínas y péptidos lácteos. ..………………...…………….162 Elena Molina. Ingredientes funcionales: obtención, bioactividad, biodisponibilidad y seguridad. ……….163 Manuela E. Pintado Probioticos y salud. ……………………………….…………………………………………………...166 Teresa Requena Anti-cancer activity of crude extracts and active compounds obtained from plant species from the state of São Paulo. …………………………………………… …….…….167 Carvalho JE, Monteiro KM, Ruiz ALTG, Magalhães PM, Rehder VLG, Foglio MA. Adición de su aceite de chía (salvia hispanica) en productos cárnicos. …………………..…170 Vega S., Ramirez M. L., Gutiérrez, R., Pérez J. J., y Coronado, M. Bacterias probióticas de la leche humana: origen y aplicaciones. ………………………...….171 Juan Miguel Rodríguez Gómez CYTED y Agroalimentación. ………………………………………….……………………………….172 Mayra de la Torre y Alberto Majo. Revalorización de subproductos mediante la obtención de principios bioactivos y su aplicación a matrices alimentarias. .………………………….……….……….173 José Ángel Pérez-Álvarez. Valorización de subproductos agroalimentarios para su uso en formulaciones de dispersiones alimentarias. ………………………………………………………………….……175 J. M. Rodríguez Patino, Mª. R. Rodríguez Niño y C. Carrera Sánchez Preservar y elevar la sanidad animal, vegetal y humana. ……………………………………….176 Arturo Escobar Medina. Obtención de ingredientes alimenticios de carácter prebiótico. ………………………………177 Mar Villamiel. 7 AGRADECIMIENTOS Este libro ha sido posible gracias a la participación de todos los investigadores que forman parte del Proyecto CYTED IBEROFUN ref: 110AC0386 “Incorporación de nuevos ingredientes funcionales a alimentos como contribución a la promoción de la salud y/o a la prevención de enfermedades de la población Iberoamericana. Nuestra especial gratitud al grupo del Dr. Salvador Vega y León de la Universidad Autónoma Metropolitana Unidad Xochimilco, División de Ciencias Biológicas y de la Salud, Mexico D.F., por la organización de las Jornadas “Alimentación y Salud” en el marco del Proyecto IBEROFUN. 8 INTRODUCCION El desarrollo de alimentos e ingredientes funcionales requiere un enfoque multidisciplinar, por lo que es necesaria la participación de un conjunto de equipos investigadores sobre el tema, en los que surjan sinergias, ayudas e intercambios, que permitan la obtención de resultados de investigación difícilmente alcanzables por un solo grupo de investigación. En este proyecto se promueve un conjunto de actividades de investigación relacionadas con los ingredientes funcionales, que ya llevan a cabo los diferentes grupos que integran esta acción, integrando sus tareas mediante la interacción y que permita una mejor transferencia al sector productivo y aumentar su competitividad. En los últimos años, la presencia de alimentos e ingredientes con propiedades beneficiosas para la salud ha aumentado en la mayoría de los mercados mundiales y es previsible siga creciendo. A pesar de ello no todos los alimentos e ingredientes funcionales que se conocen hasta el momento (e incluso los comercializados) han sido objeto de estudios científicos rigurosos
Recommended publications
  • Genes Involved in Virulence of the Entomopathogenic Fungus Beauveria Bassiana Chapter 3
    A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes Claudio A. Valero Jiménez Thesis committee Promotors Prof. Dr B.J. Zwaan Professor of Genetics Wageningen University Prof. Dr W. Takken Personal chair at the Laboratory of Entomology Wageningen University Co-promotors Dr. C.J.M. Koenraadt Assistant professor, Laboratory of Entomology Wageningen University Dr. J.A.L. van Kan Assistant professor, Laboratory of Phytopathology Wageningen University Other members Prof. Dr M.E. Schranz, Wageningen University Dr V.I.D. Ros, Wageningen University Dr M. Rep, University of Amsterdam Prof. Dr J. Eilenberg, University of Copenhagen, Denmark This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes Claudio A. Valero Jiménez Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 21 September 2016 at 4 p.m. in the Aula. Claudio A. Valero Jiménez A multidisciplinary approach to study virulence of the entomopathogenic fungus Beauveria bassiana towards malaria mosquitoes. 131 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in
    [Show full text]
  • Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An in Silico Study
    nutrients Article Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An In Silico Study Tobias Goris 1,* , Rafael R. C. Cuadrat 2 and Annett Braune 1 1 Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] 2 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] * Correspondence: [email protected] Abstract: Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackia isoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria.
    [Show full text]
  • Gut-Derived Flavonifractor Species Variants Are Differentially Enriched
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.890848; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Gut-derived Flavonifractor species variants are 2 differentially enriched during in vitro incubation with 3 quercetin 4 Short Title: Flavonifractor species variants are differentially enriched during incubation with 5 quercetin 6 Gina Paola Rodriguez-Castaño 1*, Federico E. Rey2, Alejandro Caro-Quintero3, Alejandro 7 Acosta-González1 8 1 Engineering Department, La Sabana University, Chia, Colombia 9 2 Department of Bacteriology, University of Wisconsin-Madison, USA 10 3 AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia. 11 * Correspondence: 12 Gina Paola Rodriguez-Castaño 13 [email protected] (GRC) 14 15 Abstract 16 Flavonoids are a common component of the human diet with widely reported health- 17 promoting properties. The gut microbiota transforms these compounds affecting the overall 18 metabolic outcome of their consumption. Flavonoid-degrading bacteria are often studied in 19 isolation under culture conditions that do not resemble the conditions in the colon and that bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.890848; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Bioavailability and Metabolic Pathway of Phenolic Compounds Muhammad Bilal Hussain, Sadia Hassan, Marwa Waheed, Ahsan Javed, Muhammad Adil Farooq and Ali Tahir
    Chapter Bioavailability and Metabolic Pathway of Phenolic Compounds Muhammad Bilal Hussain, Sadia Hassan, Marwa Waheed, Ahsan Javed, Muhammad Adil Farooq and Ali Tahir Abstract As potential agents for preventing different oxidative stress-related diseases, phenolic compounds have attracted increasing attention with the passage of time. Intake of fruits, vegetables and cereals in higher quantities is linked with decreased chances of chronic diseases. In plant-based foods, phenolic com- pounds are very abundant. However, bio-accessibility and biotransformation of phenolic compound are not reviewed in these studies; therefore, a detailed action mechanism of phenolic compounds is not recognized. In this article, inclusive concept of different factors affecting the bioavailability of phenolic compounds and their metabolic processes is presented through which phenolic compounds go after ingestion. Keywords: polyphenols, bioavailability, biotransformation, metabolism 1. Introduction In recent past, the awareness of the consumer related to the effect of diet on the health has been improved; therefore, leading to upsurge in the con- sumption of vegetables, cereal based foods and fruits. Numerous studies have suggested the bioactive characteristics of the bioactive moieties, i.e., phenolic compounds. Nonetheless, bioactive claims are made without taking into consid- eration the further modifications to which phenolic compounds are subjected once ingested [1]. Phenolic compounds are the secondary metabolites of plants which consti- tute an important group, i.e., phenylpropanoids. These compounds possess an aromatic ring and various OH groups which are link to it. On the basis of clas- sification, phenolic compounds are prorated into various subgroups. They are grouped as a function of the number of phenolic rings that they contain and the radicals that bind these rings to another one [2, 3].
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur Et Al
    USOO89628OOB2 (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur et al. (45) Date of Patent: Feb. 24, 2015 (54) NUCLEICACIDS AND PROTEINS AND USPC .......................................................... 530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Naperville, IL (US) PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Nolling etal (J. Bacteriol. 183: 4823 (2001).* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 0 days. Isolates of Pseudomonas aeruginosa J. Bacteriol. (2003) 185: 1316-1325. (21) Appl. No.: 13/400,365 2002.Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (22) Filed: Feb. 20, 2012 bor New York, 2001, pp. 382-393. O O Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (65) Prior Publication Data toxicology” Toxicol. Lett. (2000) 1.12: 365-370. US 2012/O266329 A1 Oct. 18, 2012 * cited by examiner Related U.S. Application Data - - - Primary Examiner — James Martinell (62) Division of application No. 1 1/817,403, filed as (74) Attorney, Agent, or Firm — DLA Piper LLP (US) application No. PCT/US2006/007642 on Mar. 3, 2006, now Pat. No. 8,119,385. (57) ABSTRACT (60) Provisional application No. 60/658,984, filed on Mar. The invention provides polypeptides, including enzymes, 4, 2005.
    [Show full text]
  • A Role for the Hydroxybenzoic Acid Metabolites of Flavonoids And
    A ROLE FOR THE HYDROXYBENZOIC ACID METABOLITES OF FLAVONOIDS AND ASPIRIN IN THE PREVENTION OF COLORECTAL CANCER BY RANJINI SANKARANARAYANAN A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Pharmaceutical Sciences South Dakota State University 2021 ii DISSERTATION ACCEPTANCE PAGE Ranjini Sankaranarayanan This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Gunaje Jayarama, A00137123 Advisor Date Omathanu Perumal Department Head Date Nicole Lounsbery, PhD Director, Graduate School Date iii ACKNOWLEDGEMENTS The completion of this work would not have been possible without the help and contribution of various people who have in their own kind way supported its accomplishment. I would like to express my heart-felt gratitude to my mentor Dr. Jayarama Bhat Gunaje for having skillfully guided me through this project and for having generously extended his support throughout. Dr. Jay has taught me invaluable lessons about honesty, integrity, and listening to your data when it comes to scientific research. He has always been a pillar of support and has also been kind in sharing his many experiences to help me both professionally and personally. I thank him for this. These four years that I spent in the lab with him will be time I will fondly remember and cherish forever. I would like to thank Dr. Joy Scaria (Department of Veterinary & Biomedical Sciences, SDSU) and Dr.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Structural and Biochemical Characterization of the Dual Substrate Recognition of the (R)-Selective Amine Transaminase from Aspergillus Fumigatus
    Struktur und Funktion der ersten bakteriellen Chalconisomerase und einer (R)-selektiven Amin-Transaminase I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Maren Thomsen geboren am 23.01.1988 in Itzehoe Greifswald, Dezember 2014 Dekan: Prof. Dr. Klaus Fesser 1. Gutachter: Prof. Dr. Winfried Hinrichs 2. Gutachter: Prof. Dr. Norbert Sträter Tag der Promotion: 25. Februar 2015 Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Einleitung 1 2. Einleitung zu Chalconisomerasen 2 2.1 Flavonoide 2 2.2 Pflanzliche Chalconisomerasen 3 2.3 Reaktionsmechanismus der pflanzlichen Chalconisomerasen 5 2.4 Degradation der Flavonoide durch die intestinale Mikroflora 6 3. Ergebnisse zur Chalconisomerase aus Eubacterium ramulus 8 3.1 De novo Strukturlösung der bakteriellen CHI mittels SIRAS 8 3.2 Strukturanalyse der bakteriellen CHI aus E. ramulus 8 3.3 Aktives Zentrum und Reaktionsmechanismus 9 3.4 Bedeutung des Lids für die bakterielle CHI 10 3.5 Suche nach Faltungshomologen zur bakteriellen CHI 11 4. Einleitung zu (R)-selektiven Amin-Transaminasen 13 5. Ergebnisse zur (R)-selektiven Amin-Transaminase aus Aspergillus fumigatus 18 5.1 Kristallisation und Röntgendiffraktion der (R)-selektiven Amin-Transaminase 18 5.2 Strukturanalyse der (R)-selektiven Amin-Transaminase 18 5.3 Untersuchungen zur dualen Substraterkennung der (R)-selektiven Amin- Transaminase 20 6. Literatur 22 7. Publikationsliste 28 Einleitung 1. Einleitung Proteine können eine Vielzahl an unterschiedlichen Funktionen ausüben. Darunter fallen Aufgaben wie die Übernahme von Stützfunktionen zum Aufbau des Zytoskeletts, andere übernehmen Transportprozesse und vermitteln den gerichteten Stofftransport in der Zelle.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • Structure-Aware M. Tuberculosis Functional Annotation
    bioRxiv preprint doi: https://doi.org/10.1101/358986; this version posted June 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Structure-aware M. tuberculosis functional annotation 2 uncloaks resistance, metabolic, and virulence genes 3 4 Running title: Structure-aware M.tb annotation uncloaks key functions 5 6 aSamuel J Modlin, aAfif Elghraoui, aDeepika Gunasekaran, aAlyssa M Zlotnicki, bNicholas A Dillon, aNermeeta 7 Dhillon, aNorman Kuo, aCassidy Robinhold, aCarmela K Chan, bAnthony D Baughn, aFaramarz Valafar* 8 9 a Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA 92182 10 b Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA 11 * Corresponding Author 12 13 14 ABSTRACT Accurate and timely functional genome annotation is essential for translating basic 15 pathogen research into clinically impactful advances. Here, through literature curation and 16 structure-function inference, we systematically update the functional genome annotation of 17 Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated 18 annotations for 589 genes from 662 publications, including 282 gene products absent from 19 leading databases. Second, we modeled 1,711 under-annotated proteins and developed a semi- 20 automated pipeline that captured shared function between 400 protein models and structural 21 matches of known function on protein data bank, including drug efflux proteins, metabolic 22 enzymes, and virulence factors.
    [Show full text]
  • Biocatalytic (De)Carboxylation of Phenolic Compounds: Fundamentals and Applications
    Biocatalytic (De)carboxylation of Phenolic Compounds: Fundamentals and Applications Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg Zur Erlangung des akademisches Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Lorenzo Pesci aus Rom 2017 Betreuer: Prof. Dr. Andreas Liese 1. Gutachter: Prof. Andreas Liese 2. Gutachter: Prof. Andrew Torda Datum der mündlichen Prüfung: 12.01.2017 Abstract Carbon dioxide is a pivotal compound in the biotic world of metabolism and in the abiotic world of chemical synthesis. These two worlds can merge, to some extent, when biological catalysts for (de)carboxylations are used to accelerate chemical conversions for industrial applications. A particular set of lyases which display this type of activity on phenolic starting materials belong to microbial degradation pathways. Such enzymes are hydroxybenzoic acid and phenolic acid (de)carboxylases, which catalyze reversible carboxylations and can be differentiated according to their regio-selectivity based on which the carboxylic group is added and removed: ortho and para , for phenolic compounds, and beta , for hydroxycinnamic acids. Because carbon dioxide and its hydrated form, bicarbonate, have considerably low standard Gibbs free energies, the equilibrium of the reactions often lie strongly on the decarboxylation side in physiological conditions. In this work, two ortho - (de)carboxylases and one beta -(de)carboxylase were studied in the reaction directions relevant for application. For ortho -selectivity, dihydroxybenzoic acid (de)carboxylases –from Rhizobium sp. and Aspergillus oryzae – were studied in the synthesis –“up-hill”– direction, which yields salicylic acids from phenols. This reaction resembles the abiotic Kolbe-Schmitt synthesis, which is conducted at elevated temperatures and pressures. Therefore, the establishment of an “enzymatic counterpart” for large scale production is highly desirable in order to achieve efficient CO 2 utilization for chemical synthesis.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]