United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen Et Al US010538797B2 United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen et al. (45 ) Date of Patent : Jan. 21 , 2020 (54 ) METHOD FOR THE BIOTECHNOLOGICAL ( 56 ) References Cited PRODUCTION OF FLAVONE GLYCOSIDE DIHYDROCHALCONES U.S. PATENT DOCUMENTS 9,359,622 B2 * 6/2016 Hilmer C12Y 505/01006 (71 ) Applicant: SYMRISE AG , Holzminden (DE ) 2014/0045233 A1 * 2/2014 Hilmer C12Y 505/01006 435/148 ( 72 ) Inventors : Maren Thomsen , Greifswald (DE ) ; Jakob Ley , Holzminden ( DE ) ; Egon FOREIGN PATENT DOCUMENTS Gross , Holzminden (DE ); Winfried Hinrichs , Greifswald (DE ) ; Uwe EP 2 692 729 A1 2/2014 Bornscheuer, Greifswald (DE ) OTHER PUBLICATIONS ( 73 ) Assignee : SYMRISE AG , Holzminden (DE ) Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 2 ( Year: 2014 ). * ( * ) Notice : Subject to any disclaimer, the term of this Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 4 ( Year: 2014 ). * patent is extended or adjusted under 35 Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 1 . U.S.C. 154 ( b ) by 16 days . ( Year: 2013 ) . * Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 3 . ( 21 ) Appl. No.: 15 /322,768 ( Year : 2013 ) . * Chica et al. Curr Opin Biotechnol . Aug. 2005; 16 ( 4 ): 378-84 . ( Year : 2005 ) . * ( 22 ) PCT Filed : Jun . 27 , 2015 Singh et al . Curr Protein Pept Sci. 2017 , 18 , 1-11 ( Year: 2017) . * Bornscheuer et al. Curr Protoc Protein Sci. Nov. 2011; Chapter PCT No .: PCT/ EP2015 / 064626 26 :Unit26.7 . ( Year: 2011 ). * ( 86 ) Gall et al, “ Enzymatische Umsetzung von Flavonoiden mit einer $ 371 ( c ) ( 1 ) , backteriellen Chalconisomerase und einer Enoatreduktase ,” Angewandte ( 2 ) Date : Apr. 6 , 2018 Chemie vol. 126 , No. 5 , Jan. 27 , 2014 , pp . 1463-1466 . ( 87 ) PCT Pub . No .: WO2016 /012198 * cited by examiner Primary Examiner — Christian L Fronda PCT Pub . Date : Jan. 28 , 2016 ( 74 ) Attorney , Agent, or Firm - Polsinelli PC (65 ) Prior Publication Data (57 ) ABSTRACT The invention relates to method for producing flavone US 2018/0216152 A1 Aug. 2 , 2018 glycoside dihydrochalcones, having the following steps : ( a ) providing a transgenic microorganism containing (i ) a first (30 ) Foreign Application Priority Data nucleic acid portion ( A ) containing a gene which codes for a bacterial chalcone isomerase and ( ii ) a second nucleic acid Jul . 1 , 2014 (EP ) 14175312 portion ( B ) containing a gene which codes for a bacterial enoate reductase , (b ) adding one or more flavone glycosides to the transgenic microorganism under conditions which ( 51 ) Int. Cl. allow the simultaneous isomerization and reduction of the C12P 19/60 ( 2006.01 ) flavone glycoside into the flavone glycoside dihydrochal C12P 17/06 ( 2006.01) cone, and optionally ( d ) isolating and purifying the final A23L 2730 ( 2016.01 ) product, wherein the nucleic acid portion ( A ) ( 1 ) is a ( 52 ) U.S. CI. nucleotide sequence according to SEQ ID NO : 1 , in which CPC C12P 19/605 (2013.01 ) ; A23L 27/33 the nucleic acid portion ( A ') according to SEQ ID NO : 3 has (2016.08 ) ; C12P 17/06 ( 2013.01) ; C12Y been cut out, or ( 2 ) is an amino acid sequence according to 103/01031 (2013.01 ) ; C12Y 505/01006 SEQ ID NO : 2 , in which the amino acid portion ( A ') accord ( 2013.01 ) ing to SEQ ID NO : 4 has been cut out. ( 58 ) Field of Classification Search None 12 Claims, 2 Drawing Sheets See application file for complete search history. Specification includes a Sequence Listing . U.S. Patent Jan. 21 , 2020 Sheet 1 of 2 US 10,538,797 B2 PET28b CHI deltaLid 6,028 bp COE1 BR322 origin Figure 1 Plasmide PET28_CHI_ALid . U.S. Patent Jan. 21 , 2020 Sheet 2 of 2 US 10,538,797 B2 soluble fraction Unsoluble Fraction On 2h 21h 2h 4h 21h Oh 65 kea ERED 43 kDa 27 Kba CHI_ALid Figure 2 SDS- PAGE of the expression of the double transformation of PET22_ERED and PET28_CHI ALid . Oh denotes the time point of the induction . Conversion1%) 40 Naringenin Naringin 4h Naringin 22h Figure 3 Conversion of the substrates by means of whole -cell - catalysis . US 10,538,797 B2 1 2 METHOD FOR THE BIOTECHNOLOGICAL derivative or derivatives thereof to a dihydrochalcone, as PRODUCTION OF FLAVONE GLYCOSIDE well as optionally : isolating and optionally purifying the DIHYDROCHALCONES dihydrochalcone, in particular phloretin . The paper by Gall et al. having the title “ Enzymatic CROSS -REFERENCE TO RELATED 5 conversion of flavonoids with a bacterial chalcone APPLICATIONS isomerase and an enoate reductase ” (Angewandte Chemie , 2014 , 126 ( 5 ) , pp . 1463-1466 ) describes the identification This application is a national stage application (under 35 and the recombinant expression of chalcone isomerase and U.S.C. § 371 ) of PCT/ EP2015 / 064626 , filed Jun . 27, 2015 , an enoate reductase from the anaerobic bacterium Eubacte which claims benefit of European Application No. 10 rium ramulus . The E. coli strain expressing the two enzymes 14175312.9 , filed Jul. 1 , 2014 , which are incorporated can be used to carry out the conversion of various flavanones herein by reference in their entireties. to their respective dihydrochalcones. Content of US 2013/0136839 (NUTRINOVA ) is a com FIELD OF THE INVENTION position of sweetening substances , including a sweetener 15 and at least one taste masking substance. Among the pos The invention is in the field of biotechnology and relates sible and various taste masking substances which can be to a method in which flavanone glycosides are converted used , naringin dihydrochalcone is found . without chemical intermediate steps to the corresponding EP 2529633 A1 ( SYMRISE ) finally describes an oral dihydrochalcones and to a corresponding microorganism , a edible composition , which can comprise among others nar vector and a host cell . 20 ingin dihydrochalcone and /or neohesperidin dihydrochal cone . PRIOR ART The object of the present invention was therefore to provide a method by means of which flavanone glycosides As part of a research program of the US Department of can be converted quickly and in high yields by biotechno Agriculture to reduce the bitter taste in citrus juices , in the 25 logical methods to the corresponding dihydrochalcones , mid 1960s a number of flavanone glycosides such as nar wherein chemical intermediate steps should be avoided ingin , hesperidin and narirutin were recognised as the crucial completely. bitter substances . Furthermore, it was found that the hydro genation of the flavanone glycosides to dihydrochalcones BRIEF DESCRIPTION OF THE DRAWINGS leads to substances that taste up to 1800 times sweeter than 30 sugar at the detection limit of the sweetening effect; if sugar FIG . 1 is a depicition of Plasmid pET28 CHI ALid . is exchanged for these dihydrochalcones in a weight ratio of FIG . 2 illustrates the SDS -PAGE of the expression of the 1 : 1 , the dihydrochalcones still prove to be more efficient by double transformation of pET22 ERED and pET28 CHI at least a factor of 300. Naringin dihydrochalcone, hesperi ALid , wherein Oh denotes the time point of the induction . din dihydrochalcone and neohesperidin dihydrochalcone are 35 FIG . 3 shows the conversion of naringin by means of currently not only among the most powerful sweeteners , but whole -cell - catalysis . are also useful in particular to mask the bitter taste of citrus substances . DESCRIPTION OF THE INVENTION Certain dihydrochalcone glycosides can be obtained by extraction from berries , especially from Malus spp . How- 40 A first subject matter of the invention relates to a process ever , the process is complicated , expensive and also depends for the preparation of flavanone glycoside dihydrochalcones on the season , and is therefore technically unimportant. comprising the steps of: Starting from flavanone glycosides the production of ( a ) provision of a transgenic microorganism containing dihydrochalcones is nowadays performed by catalytic ( i ) a first nucleic acid section ( A ) containing a gene coding reduction under strongly basic conditions or by a Friedel- 45 for a bacterial chalcone isomerase, and Crafts type acylation of phenols with dihydrocinnamic ( li ) a second nucleic acid section ( B ) containing a gene acids. Even though the synthesis is carried out in satisfactory coding for a bacterial enoate reductase gene yields and is industrially established , it has one major wherein the nucleic acid section ( A ) disadvantage however: it is a chemical manufacturing pro ( 1 ) represents a nucleotide sequence according to SEQ ID cess, which means that for regulatory reasons the final 50 NO : 1 , in which the nucleic acid section ( A ') according product cannot be declared natural. to SEQ ID NO : 3 has been cut out, or In this context, it is referred to the following documents ( 2 ) codes for an amino acid sequence according to SEQ in prior art : ID NO : 2 , in which the amino acid section ( A ') accord EP 2692729 A1 (SYMRISE ) discloses a process for ing to SEQ ID NO : 4 has been cut out, producing a dihydrochalcone using a transgenic microor- 55 (b ) addition of one or more flavanone glycosides to the ganism , comprising the following steps: Providing a trans transgenic microorganism , genic microorganism containing a nucleic acid section ( a ) ( c ) culturing the transgenic microorganism under conditions comprising or consisting of a gene coding for a bacterial which allow the simultaneous isomerisation and reduction chalcone isomerase , and /or a nucleic acid section ( a ') , com of the flavanone glycoside to the flavanone glycoside prising or consisting of a gene coding for a plant
Recommended publications
  • Chromanone-A Prerogative Therapeutic Scaffold: an Overview
    Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-021-05858-3 REVIEW-CHEMISTRY Chromanone‑A Prerogative Therapeutic Scafold: An Overview Sonia Kamboj1,2 · Randhir Singh1 Received: 28 September 2020 / Accepted: 9 June 2021 © King Fahd University of Petroleum & Minerals 2021 Abstract Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor diference from chromone but exhibits signifcant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman- 4-one analogues are addressed to signify the importance of chromanone as a versatile scafold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most efective and cost-efective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development. Keywords Chroman-4-one · Chromone · Pharmacological activity · Synthesis · Analogues 1 Introduction dihydropyran (ring B) which relates to chromane, chromene, chromone and chromenone, but the absence of C2-C3 dou- Chroman-4-one is one of the most important heterobicyclic ble bond of chroman-4-one skeleton makes a minor difer- moieties existing in natural compounds as polyphenols and ence (Table 1) from chromone and associated with diverse as synthetic compounds like Taxifolin, also known as chro- biological activities [1].
    [Show full text]
  • Their Antioxidant and Enzyme Inhibitory Activities
    antioxidants Article Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities Dong-Shin Kim and Sang-Bin Lim * Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea; [email protected] * Correspondence: [email protected] Received: 9 April 2020; Accepted: 24 April 2020; Published: 25 April 2020 Abstract: We extracted and hydrolyzed bioactive flavonoids from C. unshiu peel using subcritical water (SW) in a semi-continuous mode. The individual flavonoid yields, antioxidant and enzyme inhibitory activities of the SW extracts were analyzed. The extraction yields of hesperidin and narirutin increased with increasing temperature from 145 ◦C to 165 ◦C. Hydrothermal hydrolysis products (HHP), such as monoglucosides (hesperetin-7-O-glucoside and prunin) and aglycones (hesperetin and naringenin) were obtained in the SW extracts at temperatures above 160 ◦C. The sum of hesperidin and its HHP in the SW extracts was strongly correlated with antioxidant activities, whereas the contents of hesperetin and naringenin were strongly correlated with enzyme inhibitory activities. Hesperetin exhibited the highest antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity), whereas hesperetin-7-O-glucoside exhibited the highest enzyme inhibitory activities (angiotensin-I converting enzyme (ACE) and pancreatic lipase (PL)). Naringenin exhibited the highest enzyme inhibitory activities (xanthine oxidase and α-glucosidase). PMFs (sinensetin, nobiletin, and tangeretin) also exhibited relatively high inhibitory activities against ACE and PL. This study confirms the potential of SW for extracting and hydrolyzing bioactive flavonoids from C. unshiu peel using an environmentally friendly solvent (water) and a shorter extraction time.
    [Show full text]
  • Antifungal Activity of Natural and Enzymatically-Modified Flavonoids
    Food Chemistry 124 (2011) 1411–1415 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species Maria Paula Salas a,b,*, Gustavo Céliz c, Hugo Geronazzo c, Mirta Daz c, Silvia Liliana Resnik b,d a Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT), Argentina b Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina c Instituto de Investigaciones para la Industria Química (CONICET) and Facultad de Ciencias Exactas, Universidad Nacional de Salta, Avenida Bolivia 5150, Salta, Argentina d Comisión Científica de Investigaciones, Calle 526 entre 10 y 11, La Plata, Buenos Aires, Argentina article info abstract Article history: The antifungal activity of isolated flavonoids from Citrus species, such as naringin, hesperidin and neohes- Received 2 November 2009 peridin, and enzymatically-modified derivatives of these compounds, was studied on four fungi often Received in revised form 17 June 2010 found as food contaminants: Aspergillus parasiticus, Aspergillus flavus, Fusarium semitectum and Penicillium Accepted 27 July 2010 expansum. Although all the flavonoids showed antifungal activity, the intensity of this activity depended on the type of fungus and compound used. The hesperetin glucoside laurate strongly inhibited the myce- lial growth of P. expansum, while prunin decanoate was the most inhibiting flavonoid for A. flavus, A. par- Keywords: asiticus, and F. semitectum. Flavonoids The flavonoids naringin, hesperidin and neohesperidin, obtained as byproducts at low cost from the Mycelial growth Fungal growth residues of the citrus industries, present an interesting option for these industries.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • (Piper Nigrum L.) Products Based on LC-MS/MS Analysis
    molecules Article Nontargeted Metabolomics for Phenolic and Polyhydroxy Compounds Profile of Pepper (Piper nigrum L.) Products Based on LC-MS/MS Analysis Fenglin Gu 1,2,3,*, Guiping Wu 1,2,3, Yiming Fang 1,2,3 and Hongying Zhu 1,2,3,* 1 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; [email protected] (G.W.); [email protected] (Y.F.) 2 National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China 3 Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China * Correspondence: [email protected] (F.G.); [email protected] (H.Z.); Tel.: +86-898-6255-3687 (F.G.); +86-898-6255-6090 (H.Z.); Fax: +86-898-6256-1083 (F.G. & H.Z.) Received: 16 July 2018; Accepted: 7 August 2018; Published: 9 August 2018 Abstract: In the present study, nontargeted metabolomics was used to screen the phenolic and polyhydroxy compounds in pepper products. A total of 186 phenolic and polyhydroxy compounds, including anthocyanins, proanthocyanidins, catechin derivatives, flavanones, flavones, flavonols, isoflavones and 3-O-p-coumaroyl quinic acid O-hexoside, quinic acid (polyhydroxy compounds), etc. For the selected 50 types of phenolic compound, except malvidin 3,5-diglucoside (malvin), 0 L-epicatechin and 4 -hydroxy-5,7-dimethoxyflavanone, other compound contents were present in high contents in freeze-dried pepper berries, and pinocembrin was relatively abundant in two kinds of pepper products. The score plots of principal component analysis indicated that the pepper samples can be classified into four groups on the basis of the type pepper processing.
    [Show full text]
  • Survey of Phenolic Compounds Produced in Citrus
    USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem­ istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda­ Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.
    [Show full text]
  • Studies on the Extraction and Characterization of Pectin and Bitter
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. STUDIES ON THE EXTRACTION AND CHARACTERIZATION OF' PECTIN AND BITTER PRINCIPLES FROM NEW ZEALAND GRAPEFRUIT AND PHILIPPINE CALAMANSI A thesis presented in partial fulfilment of the requirements for the d egr ee of Master of Technology in Food Technology at Massey University MYRNA ORDONA NISPEROS 1981 ii ABSTRACT A study was conducted to determine the presence of bitter components in NZ grapefruit and Philippine ca.lamansi; describe the effect of maturity on the bitter components and other chemical constituents of grapefruit; reduce the bitterness of grapefruit juice by adsorption on polyvinylpyrrolidone; and to extract and characterize pectin from grapefruit peel. Naringin (995 ppm), narirutin (187 ppm), and limonoids (7.9 ppm) were detected in NZ grapefruit juice concentrate (27° Brix). Naringin was not detected in the calamansi juice, and limonin was detected at the level of 10.5 ppm in juice containing 5% crushed seeds. Maturation of the grapefruit caused an increase in pH from J.00 to J.50, an increase in total soluble solids from 10.8 to 14.4 with a decline to 13.5° Brix later in the season, a steady fall in acidity from 2.50 to 1.31 g citric acid/100 mL, and a continuous rise in the Brix/acid ratio from 4.2 to 10.J. Juice yield fluctuated throughout the season.
    [Show full text]
  • Insecticidal and Antifungal Chemicals Produced by Plants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Insecticidal and antifungal chemicals produced by plants: a review Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger-Merciris To cite this version: Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger- Merciris. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chem- istry Letters, Springer Verlag, 2012, 10 (4), pp.325 - 347. 10.1007/s10311-012-0359-1. hal-01767269 HAL Id: hal-01767269 https://hal-normandie-univ.archives-ouvertes.fr/hal-01767269 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Version définitive du manuscrit publié dans / Final version of the manuscript published in : Environmental Chemistry Letters, 2012, n°10(4), 325-347 The final publication is available at www.springerlink.com : http://dx.doi.org/10.1007/s10311-012-0359-1 Insecticidal and antifungal chemicals produced by plants. A review Isabelle Boulogne 1,2* , Philippe Petit 3, Harry Ozier-Lafontaine 2, Lucienne Desfontaines 2, Gladys Loranger-Merciris 1,2 1 Université des Antilles et de la Guyane, UFR Sciences exactes et naturelles, Campus de Fouillole, F- 97157, Pointe-à-Pitre Cedex (Guadeloupe), France.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: a Review
    Int. J. Mol. Sci. 2014, 15, 19369-19388; doi:10.3390/ijms151119369 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review Nguyen Thai Huynh 1,2,3,4, John Van Camp 2, Guy Smagghe 3 and Katleen Raes 1,* 1 Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University—Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; E-Mail: [email protected] 2 Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; E-Mail: [email protected] 3 Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; E-Mail: [email protected] 4 Faculty of Food Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, 700000 Ho Chi Minh City, Vietnam * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-56-241-255; Fax: +32-56-241-224. External Editor: Antonio Segura-Carretero Received: 9 September 2014; in revised form: 16 October 2014 / Accepted: 20 October 2014 / Published: 24 October 2014 Abstract: This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation.
    [Show full text]
  • S1 of S77 Supplementary Materials: Discovery of a New Class of Cathepsin Kinhibitors in Rhizoma Drynariaeas Potential Candidates for the Treatment of Osteoporosis
    Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S1 of S77 Supplementary Materials: Discovery of a New Class of Cathepsin KInhibitors in Rhizoma Drynariaeas Potential Candidates for the Treatment of Osteoporosis Zuo-Cheng Qiu, Xiao-Li Dong, Yi Dai, Gao-Keng Xiao, Xin-Luan Wang, Ka-Chun Wong, Man-Sau Wong and Xin-Sheng Yao Table S1. Compounds identified from Drynariae rhizome (DR). No. Compound Name Chemical Structure 1 Naringin 5,7,3′,5′-Tetrahydroxy-flavanone 2 7-O-neohesperidoside 3 Narigenin-7-O-β-D-glucoside 5,7,3′,5′-Tetrahydroxy-flavanone 4 7-O-β-D-glucopyranoside 5 Naringenin 6 5,7,3′,5′-Tetrahydroxyflavanone 7 Kushennol F 8 Sophoraflavanone G 9 Kurarinone Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S2 of S77 Table S1. Cont. No. Compound Name Chemical Structure 10 Leachianone A 11 Luteolin-7-O-neohesperidoside 12 Luteolin-5-O-neohesperidoside 13 Kaempferol-7-O-α-L-arabinofuranoside 14 8-Prenylapigenin 15 Apigenine 16 Kaempferol-3-O-α-L-rhamnopyranoside OH HO O 17 Astragalin O OH OH O O OH OH OH 18 3-O-β-D-Glucopyranoside-7-O-α-L-arabinofuranoside OH HO O HO O O 19 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside OH OH O Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S3 of S77 Table S1. Cont. No. Compound Name Chemical Structure 20 5,7-Dihydroxychromone-7-O-neohesperidoside Kaempferol 21 3-O-β-D-glucopyranoside-7-O-β-D-glucopyranoside 22 Xanthohumol OH HO O 23 Epicatechin OH OH OH 24 (E)-4-O-β-D-Glucopyranosyl caffeic acid 25 β-D-Glucopyranosyl sinapoic acid 26 4-O-β-D-Glucopyranosyl ferulic acid 27 Trans-caffeic acid 28 4-O-β-D-Glucopyranosyl coumaric acid 29 Dihydrocaffeic acid methyl ester 30 Dihydrocaffeic acid 31 3,4-Dihydroxyl benzoic acid 32 4-O-D-Glucosyl vanillic acid Int.
    [Show full text]
  • Selective Synthesis of Citrus Flavonoids Prunin and Naringenin Using Heterogeneized Biocatalyst on Graphene Oxide
    1 Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide Jose Miguel Carcellerd, Julián Paul Martínez Galána, Rubens Montib, Juliana Cristina Bassanb, Marco Filice b,c, Sara Iborra*d, Jihong Yue ,Avelino Corma*d aSchool of Nutrition and Dietetic, University of Antioquia CP 050010, Medellín, Antioquia, Colombia. bDepartment of Food and Nutrition, Faculdade de Ciências Farmacêuticas, UNESP – Univ Estadual Paulista.CEP 14801-902, Araraquara, SP, Brazil c Department of Biocatalysis Institute of Catalysis (ICP-CSIC) Marie Curie 2 Cantoblanco Campus UAM 28049 Madrid Spain d Universitat Politécnica de Valencia, Institute of Chemical Technology (ITQ) - Valencia, Spain, Avenida Los Naranjos s/n 46022 eState key Laboratory of Inorganic Synthesis & Preparative Chemistry Jilin University, 2699 Qianjin Street Changchun 130012, P.R. China Keywords: supported naringinase, graphene oxide, naringin, prunin, naringenin Abstract The production of citrus flavonoids prunin and naringenin has been performed selectively through the enzyme hydrolysis of naringin, a flavonoid glycoside abundant in grapefruit wastes. To produce the monoglycoside flavonoid, prunin, the crude naringinase from Penicillium decumbens has been purified by a single purification step resulting in one enzyme with high -rhamnosidase activity. Both, crude and purified enzymes have been covalently immobilized on graphene oxide. The activity of the 2 immobilized enzymes at different pH and temperatures as well as the thermal stability were determined and compared with those exhibited by the free naringinases using specific substrates: p-nitrophenyl-β-D-glucoside (Glc-pNP) and p-nitrophenyl-alpha-L- rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on GO were tested in the hydrolysis of naringin giving naringenin and prunin respectively in excellent yields.
    [Show full text]