Chromanone-A Prerogative Therapeutic Scaffold: an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Chromanone-A Prerogative Therapeutic Scaffold: an Overview Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-021-05858-3 REVIEW-CHEMISTRY Chromanone‑A Prerogative Therapeutic Scafold: An Overview Sonia Kamboj1,2 · Randhir Singh1 Received: 28 September 2020 / Accepted: 9 June 2021 © King Fahd University of Petroleum & Minerals 2021 Abstract Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor diference from chromone but exhibits signifcant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman- 4-one analogues are addressed to signify the importance of chromanone as a versatile scafold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most efective and cost-efective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development. Keywords Chroman-4-one · Chromone · Pharmacological activity · Synthesis · Analogues 1 Introduction dihydropyran (ring B) which relates to chromane, chromene, chromone and chromenone, but the absence of C2-C3 dou- Chroman-4-one is one of the most important heterobicyclic ble bond of chroman-4-one skeleton makes a minor difer- moieties existing in natural compounds as polyphenols and ence (Table 1) from chromone and associated with diverse as synthetic compounds like Taxifolin, also known as chro- biological activities [1]. manone or benzo-dihydropyran or benzopyran. Structurally, chroman-4-one is a fusion of benzene nucleus (ring A) with * Randhir Singh [email protected] 1 Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana 133203, India 2 Ch. Devi Lal College of Pharmacy, Jagadhri, Haryana 135003, India Vol.:(0123456789)1 3 Arabian Journal for Science and Engineering O O 4 4 4 4 3 3 3 3 2 2 2 O 2 O O O 1 1 1 1 Chromane Chromene Chroman -4-one Chromone Natural and synthetic chromanone analogs show vari- other diseases [4]. Presently, a number of research groups ous biological activities such as anticancer, tumor necrosis are working in designing and development of more potent factor-α (TNF-α) inhibitors, antivascular, antidiabetic, anti- and signifcant chromanone analogues. So, in the present oxidant, antimicrobial, antifungal, antiviral, antileishmanial, review, recent literature available up to 2020 about chro- insecticidal, spasmolytic, analgesic, anti-infammatory, anti- man-4-one derivative and their pharmacological activities coagulant, estrogenic inhibitor, anti-acetylcholinesterase is accrued. Present review article will ofer a platform to the (AchE) inhibitor, antihuman immunodefciency virus (HIV), researchers in designing and development of novel potent anticonvulsant, antidepressants, anticoronal and antituber- chroman-4-one analogs. cular activity. Due to of these activities, several analogues of chromane are also available in market like tocopherols 2 Biological Activities of Chromanone (vitamin E), taxifolin (antidiabetic), tetrazole (antidiabetic), troglitazone (antidiabetic), ormeloxifene (anticancer) and 2.1 Anticancer Activity nebivolol (beta-blocker) [2]. Moreover, several isolated fa- vanones, favonols, homoisofavonoids like naringenin, nar- ingin, myricetin, dihydroquercetin and kaempferol are also Discovery and development of novel anticancer agents under clinical studies [3]. Therefore, among the diverse array with potent cytotoxic activity is one of the top priorities in of chromane, chroman-4-one/4-chromanone are of consider- pharmaceutical research. Several limitations like variable able interest to researchers due to potency of this clinically efcacy, poor toxicity profle and adverse efects are associ- useful pharmacophore in the treatment of cancer and several ated with the usage of currently available chemotherapeutic agents [5]. Generally, cancer can be measured by assessing Table 1 Properties of chromanone and chromone Name Chroman-4-one Chromone IUPAC name 4-Chromanone 4-Chromone Other names (Synonym) Chromanone, 4-chromanone, chroman-4-one dihydrobenzo pyran, Chromone, 4-Chromone, benzopyran, 2,3-dihydro-4H-1-benzopyran-4-one 4H-Chromen-4-one,4H-1-Benzo- pyran-4-one Structure O O 4 4 3 3 2 2 O O 1 1 Formula C9H8O2 C9H6O2 Formula weight 148.15 g/mol 146.14 g/mol Molecular weight 148.15 g/mol 146.14 g/mol Density 1.196 ± 0.06 g/cm3 1.248 ± 0.06 g/cm3 Xlog P3 1.4 ± 0.24 1.4 ± 0.24 Melting point 36.5 ºC 59.0 ºC Composition 72.96% 73.97% C 5.44% 4.14% H 21.60% 21.90% O 1 3 Arabian Journal for Science and Engineering OH OH OH OH H3CO O HO O HO O OH O OH O OH O Naringenin Eriodictoyl Sakuranetin OH OH OH OCH3 OCH3 H3CO HO O O H HO O O O OO H CH3 OH O Sterubin Deguellin CH3 Hesperetin Fig. 1 Natural favanones containing chroman-4-one as parent moiety O O O O HO O HO O OH OH 4-hydroxyflavonone 5,4'-Dideoxyflavonone 5-Dideoxyflavonone OH OH OH OCH3 OH HO O HO O H3CO O OH OH O OH O OH O Hesperetin (2S,3S)-trans-Dihydroquercetin Sakuranetin Fig. 2 Chroman-4-one derived structure (under development phase) the degree of mitochondrial impairment and metabolic dys- in lipid metabolism and unbalanced pH [6]. Therefore, to functions such as cellular energy supply, cell death signal- cure such metabolic dysfunctions, naturally occurring fa- ing, irregulation of metabolic pathways, formation of reac- vonoids, favonols, favanones (2-phenyl chroman-4-one tive oxygen species (ROS), compromised enzyme actions, derivatives) and homoisofavanones exhibit good anticancer aerobic glycolysis augmented in tumor cells, alterations potential along with other pharmacological activities such 1 3 Table 2 Chroman-4-one analogs exhibiting anticancer activity Sr. No. Compound Structure Evaluation Inference 1 (E)-3-benzylidene-7-methoxychroman-4-one O Evaluated against MDA-MB-231 (breast Signifcant inhibition against MDA- derivatives (3-chloro-4,5-dimethoxyben- Cl cancer), KB (nasopharyngeal epidermoid MB-231 = 7.56 ± 2.23, KB = 25.04 ± 10.60 zylidene derivative) carcinoma) and SK-N-MC (human neuro- and SK-N-MC = 9.64 ± 2.7 blastoma) cell lines using MTT assay Marked as best anticancer agent among the H3CO O OCH3 series [16] OCH3 2 (E)-3-(2′-methoxybenzylidene)-4-chromanone OOCH 3 Evaluated for antiproliferative activity in Exhibited highest potency against proliferation HUVEC (human umbilical vein endothelial of endothelial cells with IC50 = 19 µM [17] cells) O 3 6,7-Methylenedioxy-4-chromanone O Evaluated against three breast cancer cell lines Exhibited highest anticancer activity against (MCF-7, T47D and MDA-MB-231) tested cell lines (IC ≤ 9.3 µg/ml) [18] O 50 O O 4 3-Benzylidene-chroman-4-one derivatives O Evaluated against K562, MDA-MB-231 and Exhibited potent anticancer activity with OCH 3 SK-N-M Cell lines IC50 ≤ 3.86 µg/ml [19] HO O OH Br 5 Hydroxy favanones O Evaluated against colorectal carcinoma cells Exhibited potent cytotoxic activity [20] OH such as A549, LLC, AGS, SK-Hepl and HA22T cancer cells O O OH ScienceandEngineering Journalfor Arabian O Cl 6 Synthetic favanones (4′,7-dimethoxyfa- O Evaluated for antiproliferative activity against Exhibited potent cytotoxic activity [21] vanone) MCF-7 (human breast cancer) cells Apoptotic cell population = 34.89% H3CO O OCH3 1 3 Arabian Journal for ScienceandEngineering Journalfor Arabian Table 2 (continued) Sr. No. Compound Structure Evaluation Inference O 7 Halogenated favanones 3′,7-dichlorofavanone Evaluated against MCF-7, LNCaP, PC3, Hep- Very potent compound (IC50 = 2.9 µM) against G2, KB, SK-N-MC cells MDA-MB-231 cell line than etoposide (refer- ence drug) [22] Cl Cl O 3′,6-Dichlorofavanone O Cl Cl O O 8 7, 8-Methylenedioxyfavanones Examine cytotoxic potential and apoptosis in Exhibit better cytotoxic potency than reference human leukemia cells [23] O O R1 O R1=2'-Cl or 2'-NO2 OH O 9 2’-Chloro- or 2′-nitro-substituted chroman- Tested for cytotoxic activity against Bel-7402, Showed signifcant cytotoxic activity [24] H3C 4-one compounds HL-60, BGC-823 and KB (human cancer HO O R1 cell lines) CH3 R1=2'-Cl or 2'-NO2 10 7-Methoxyisofavanone O Evaluated against HL60 (acute myeloblastic Displayed highest anticancer activity against leukemia cells) and PBMC (peripheral blood HL60 cells [25] mononuclear cells) using MTT assay H3CO O Diarylchromanone O H3CO O NO 2 11 3-Arylidenefavanone and chromanone (E, Z Screened against HL-60, NALM-6, WM115 Z-isomer (chromanone) was found to be more isomers) and 3-arylfavones O and normal cells HUVEC cancer cell lines cytotoxic, while E-isomer was entirely inac- tive IC50 = 0.9 ± 0.2 (HL60), H N 1.6 ± 0.3 (NALM-6), O 6.3 ± 0.5 (WM-115), 5.77 ± 0.17(HUVEC) [26] 1 3 Table 2 (continued) Sr. No. Compound Structure Evaluation Inference OOH 12 3-Benzylchroman-4-ones Examined against two cancerous cell lines 3-Benzylchroman-4-one derivatives (a) BT549 (human breast carcinoma), HeLa was found to be the most active against O (human cervical carcinoma) and one BT549 (IC50 = 20.1 mM), HeLa cell lines (a) noncancerous cell line Vero (normal kidney (IC50 = 42.8 mM), whereas 3-benzylchroman- epithelial cells)
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Producing Cultured Cells of Sophora Flavescens
    Plant Biotechnology 21(5), 355–359 (2004) Original Paper Metabolism of administered (2RS)-naringenin in flavonoid- producing cultured cells of Sophora flavescens Hirobumi Yamamoto*, Hiroki Kuribayashi, Yasuharu Seshima, Ping Zhao1, Isao Kouno1, Goro Taguchi2, Koichiro Shimomura Plant Regulation Research Center, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura, Gunma 374-0193, Japan 1Medicinal Plant Garden, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan 2Division of Gene Research, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Nagano 386-8567, Japan *E-mail: [email protected] Tel: +81-276-82-9206 Fax: +81-276-82-9206 Received August 30, 2004; accepted October 4, 2004 (Edited by K. Yazaki) Abstract Cultured cells of Sophora flavescens produce (2S)-naringenin-derived prenylated flavanone sophoraflavanone G and liquiritigenin-derived trifolirhizin 6Ј-O-malonate. The regulation of flavonoid biosynthesis was examined by analyzing the metabolites produced in the cultured cells fed (2RS)-naringenin. The amount of sophoraflavanone G in cells fed 0.1 or 0.3 mM (2RS)-naringenin was two-fold that in control cells, although the conversion ratio was only 5 to 10% of the administered (2S)-naringenin. On the other hand, (2R)-naringenin, which does not occur naturally, was efficiently converted into its 4Ј,7-di-O-b-D-glucoside. (2S)-Naringenin prenylation activity was higher at the logarithmic growth stage. The cells fed (2RS)-naringenin at a lower concentration (below 0.1 mM), accumulated sophoraflavanone G as the main prenylated flavanone.
    [Show full text]
  • Chondroprotective Agents
    Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof.
    [Show full text]
  • Cushnie TPT, Lamb AJ. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356
    Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356. PMID: 16323269 DOI: 10.1016/j.ijantimicag.2005.09.002 The journal article above is freely available from the publishers at: http://www.idpublications.com/journals/PDFs/IJAA/ANTAGE_MostCited_1.pdf and also... http://www.ijaaonline.com/article/S0924-8579(05)00255-4/fulltext Errata for the article (typesetting errors by Elsevier Ireland) are freely available from the publishers at: http://www.ijaaonline.com/article/S0924-8579(05)00352-3/fulltext and also... http://www.sciencedirect.com/science/article/pii/S0924857905003523 International Journal of Antimicrobial Agents 26 (2005) 343–356 Review Antimicrobial activity of flavonoids T.P. Tim Cushnie, Andrew J. Lamb ∗ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, UK Abstract Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement.
    [Show full text]
  • An Investigation on the Anti-Tumor Activities of Sophoraflavanone G on Human Myeloid Leukemia Cells
    An Investigation on the Anti-tumor Activities of Sophoraflavanone G on Human Myeloid Leukemia Cells LIU, Xiaozhuo A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy in Biochemistry • The Chinese University of Hong Kong September 2008 The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School. 統系餘t圖 |( 2 0 1 雇)l) ^^ UNIVERSITY /M ^^S^UBRARY SYSTEMX^ Declaration I declare that the assignment here submitted is original except for source material explicitly acknowledged. I also acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the disciplinary guidelines and procedures applicable to breaches of such policy and regulations, as contained in the website http://www.cuhk.edu.hk/policy/academichonesty/ 16/09/2008 Signature Date LIU Xiaozhuo 06148340 Name Student ID Thesis of M.Phil, in Biochemistry Title: An Investigation on the Anti-tumor Activities of Sophoraflavanone G on Human Myeloid Leukemia Cells Course code Course title Thesis/ Assessment Committee Professor S. K. Kong (Chair) Professor K. N. Leung (Thesis Supervisor) Professor K. P. Fung (Thesis Supervisor) Professor C. K. Wong (Committee Member) Professor Ricky N. S. Wong (External Examiner) Abstract Abstract During the last one and a half centuries, our basic understanding of leukemia has expanded greatly, from the first description as "white blood" in the year of 1845 to the recognition of leukemia as disorders of hematopoietic cell differentiation and apoptosis.
    [Show full text]
  • Evaluation of Anticancer Activities of Phenolic Compounds In
    EVALUATION OF ANTICANCER ACTIVITIES OF PHENOLIC COMPOUNDS IN BLUEBERRIES AND MUSCADINE GRAPES by WEIGUANG YI (Under the Direction of CASIMIR C. AKOH) ABSTRACT Research has shown that diets rich in phenolic compounds may be associated with lower risk of several chronic diseases including cancer. This study systematically evaluated the bioactivities of phenolic compounds in blueberries and muscadine grapes, and assessed their potential cell growth inhibition and apoptosis induction effects using two colon cancer cell lines (HT-29 and Caco-2), and one liver cancer cell line (HepG2). In addition, the absorption of blueberry anthocyanin extracts was evaluated using Caco-2 human intestinal cell monolayers. Polyphenols in three blueberry cultivars (Briteblue, Tifblue and Powderblue), and four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were extracted and freeze dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using a HLB cartridge and LH20 column. In both blueberries and muscadine grapes, some individual phenolic acids and flavonoids were identified by HPLC with more than 90% purity in anthocyanin fractions. The dried extracts and fractions were added to the cell culture medium to test for cell growth inhibition and induction of apoptosis. Polyphenols from both blueberries and muscadine grapes had significant inhibitory effects on cancer cell growth. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at 0.5-3 µg/mL. The intermediate bioactivities were observed in the flavonol and tannin fractions. The greatest inhibitory effect among all four fractions was from the anthocyanin fractions in the three cell lines. Cell growth was significantly inhibited more than 50% by the anthocyanin fractions at concentrations of 15-300 µg/mL.
    [Show full text]
  • Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids
    pharmaceutics Review Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids Giuliana Donadio 1,†, Francesca Mensitieri 2,†, Valentina Santoro 1, Valentina Parisi 1,3, Maria Laura Bellone 1,3, Nunziatina De Tommasi 1, Viviana Izzo 2 and Fabrizio Dal Piaz 2,* 1 Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; [email protected] (G.D.); [email protected] (V.S.); [email protected] (V.P.); [email protected] (M.L.B.); [email protected] (N.D.T.) 2 Department of Medicine and Surgery, University of Salerno, 84082 Baronissi, Italy; [email protected] (F.M.); [email protected] (V.I.) 3 PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Flavonoids are among the most abundant natural bioactive compounds produced by plants. Many different activities have been reported for these secondary metabolites against numerous cells and systems. One of the most interesting is certainly the antimicrobial, which is stimulated through various molecular mechanisms. In fact, flavonoids are effective both in directly damaging the envelope of Gram-negative and Gram-positive bacteria but also by acting toward specific molecular targets essential for the survival of these microorganisms. The purpose of this paper is to present an overview of the most interesting results obtained in the research focused on the study of the Citation: Donadio, G.; Mensitieri, F.; interactions between flavonoids and bacterial proteins. Despite the great structural heterogeneity Santoro, V.; Parisi, V.; Bellone, M.L.; of these plant metabolites, it is interesting to observe that many flavonoids affect the same cellular De Tommasi, N.; Izzo, V.; Dal Piaz, F.
    [Show full text]
  • Biochemical Characterization of a Flavonoid O-Methyltransferase from Perilla Leaves and Its Application in 7-Methoxyflavonoid Production
    molecules Article Biochemical Characterization of a Flavonoid O-methyltransferase from Perilla Leaves and Its Application in 7-Methoxyflavonoid Production 1, 2, 1 1 1 Hye Lin Park y, Jae Chul Lee y, Kyungha Lee , Jeong Min Lee , Hyo Jeong Nam , Seong Hee Bhoo 1,3, Tae Hoon Lee 2,3, Sang-Won Lee 1,* and Man-Ho Cho 1,3,* 1 Department of Genetic Engineering, Kyung Hee University, Yongin 17104, Korea; [email protected] (H.L.P.); [email protected] (K.L.); [email protected] (J.M.L.); [email protected] (H.J.N.); [email protected] (S.H.B.) 2 Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea; [email protected] (J.C.L.); [email protected] (T.H.L.) 3 Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea * Correspondence: [email protected] (S.-W.L.); [email protected] (M.-H.C.) These authors equally contributed to this work. y Academic Editors: Sławomir Dresler and Barbara Hawrylak-Nowak Received: 3 September 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: Methylation is a common structural modification that can alter and improve the biological activities of natural compounds. O-Methyltransferases (OMTs) catalyze the methylation of a wide array of secondary metabolites, including flavonoids, and are potentially useful tools for the biotechnological production of valuable natural products. An OMT gene (PfOMT3) was isolated from perilla leaves as a putative flavonoid OMT (FOMT). Phylogenetic analysis and sequence comparisons showed that PfOMT3 is a class II OMT.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen Et Al
    US010538797B2 United States Patent (10 ) Patent No.: US 10,538,797 B2 Thomsen et al. (45 ) Date of Patent : Jan. 21 , 2020 (54 ) METHOD FOR THE BIOTECHNOLOGICAL ( 56 ) References Cited PRODUCTION OF FLAVONE GLYCOSIDE DIHYDROCHALCONES U.S. PATENT DOCUMENTS 9,359,622 B2 * 6/2016 Hilmer C12Y 505/01006 (71 ) Applicant: SYMRISE AG , Holzminden (DE ) 2014/0045233 A1 * 2/2014 Hilmer C12Y 505/01006 435/148 ( 72 ) Inventors : Maren Thomsen , Greifswald (DE ) ; Jakob Ley , Holzminden ( DE ) ; Egon FOREIGN PATENT DOCUMENTS Gross , Holzminden (DE ); Winfried Hinrichs , Greifswald (DE ) ; Uwe EP 2 692 729 A1 2/2014 Bornscheuer, Greifswald (DE ) OTHER PUBLICATIONS ( 73 ) Assignee : SYMRISE AG , Holzminden (DE ) Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 2 ( Year: 2014 ). * ( * ) Notice : Subject to any disclaimer, the term of this Accession V9P0A9 . Mar. 19 , 2014. Alignment to SEQ ID No. 4 ( Year: 2014 ). * patent is extended or adjusted under 35 Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 1 . U.S.C. 154 ( b ) by 16 days . ( Year: 2013 ) . * Accession KF154734 . Dec. 31, 2013. Alignment to SEQ ID No. 3 . ( 21 ) Appl. No.: 15 /322,768 ( Year : 2013 ) . * Chica et al. Curr Opin Biotechnol . Aug. 2005; 16 ( 4 ): 378-84 . ( Year : 2005 ) . * ( 22 ) PCT Filed : Jun . 27 , 2015 Singh et al . Curr Protein Pept Sci. 2017 , 18 , 1-11 ( Year: 2017) . * Bornscheuer et al. Curr Protoc Protein Sci. Nov. 2011; Chapter PCT No .: PCT/ EP2015 / 064626 26 :Unit26.7 . ( Year: 2011 ). * ( 86 ) Gall et al, “ Enzymatische Umsetzung von Flavonoiden mit einer $ 371 ( c ) ( 1 ) , backteriellen Chalconisomerase und einer Enoatreduktase ,” Angewandte ( 2 ) Date : Apr.
    [Show full text]
  • S1 of S77 Supplementary Materials: Discovery of a New Class of Cathepsin Kinhibitors in Rhizoma Drynariaeas Potential Candidates for the Treatment of Osteoporosis
    Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S1 of S77 Supplementary Materials: Discovery of a New Class of Cathepsin KInhibitors in Rhizoma Drynariaeas Potential Candidates for the Treatment of Osteoporosis Zuo-Cheng Qiu, Xiao-Li Dong, Yi Dai, Gao-Keng Xiao, Xin-Luan Wang, Ka-Chun Wong, Man-Sau Wong and Xin-Sheng Yao Table S1. Compounds identified from Drynariae rhizome (DR). No. Compound Name Chemical Structure 1 Naringin 5,7,3′,5′-Tetrahydroxy-flavanone 2 7-O-neohesperidoside 3 Narigenin-7-O-β-D-glucoside 5,7,3′,5′-Tetrahydroxy-flavanone 4 7-O-β-D-glucopyranoside 5 Naringenin 6 5,7,3′,5′-Tetrahydroxyflavanone 7 Kushennol F 8 Sophoraflavanone G 9 Kurarinone Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S2 of S77 Table S1. Cont. No. Compound Name Chemical Structure 10 Leachianone A 11 Luteolin-7-O-neohesperidoside 12 Luteolin-5-O-neohesperidoside 13 Kaempferol-7-O-α-L-arabinofuranoside 14 8-Prenylapigenin 15 Apigenine 16 Kaempferol-3-O-α-L-rhamnopyranoside OH HO O 17 Astragalin O OH OH O O OH OH OH 18 3-O-β-D-Glucopyranoside-7-O-α-L-arabinofuranoside OH HO O HO O O 19 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside OH OH O Int. J. Mol. Sci.2016, 17, 2116; doi:10.3390/ijms17122116 S3 of S77 Table S1. Cont. No. Compound Name Chemical Structure 20 5,7-Dihydroxychromone-7-O-neohesperidoside Kaempferol 21 3-O-β-D-glucopyranoside-7-O-β-D-glucopyranoside 22 Xanthohumol OH HO O 23 Epicatechin OH OH OH 24 (E)-4-O-β-D-Glucopyranosyl caffeic acid 25 β-D-Glucopyranosyl sinapoic acid 26 4-O-β-D-Glucopyranosyl ferulic acid 27 Trans-caffeic acid 28 4-O-β-D-Glucopyranosyl coumaric acid 29 Dihydrocaffeic acid methyl ester 30 Dihydrocaffeic acid 31 3,4-Dihydroxyl benzoic acid 32 4-O-D-Glucosyl vanillic acid Int.
    [Show full text]