The Antioxidant Activity of Prenylflavonoids 3

Total Page:16

File Type:pdf, Size:1020Kb

The Antioxidant Activity of Prenylflavonoids 3 molecules Review The Antioxidant Activity of Prenylflavonoids Clementina M. M. Santos 1,* and Artur M. S. Silva 2,* 1 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal 2 QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal * Correspondence: [email protected] (C.M.M.S.); [email protected] (A.M.S.S.) Received: 3 January 2020; Accepted: 3 February 2020; Published: 6 February 2020 Abstract: Prenylated flavonoids combine the flavonoid moiety and the lipophilic prenyl side-chain. A great number of derivatives belonging to the class of chalcones, flavones, flavanones, isoflavones and other complex structures possessing different prenylation patterns have been studied in the past two decades for their potential as antioxidant agents. In this review, current knowledge on the natural occurrence and structural characteristics of both natural and synthetic derivatives was compiled. An exhaustive survey on the methods used to evaluate the antioxidant potential of these prenylflavonoids and the main results obtained were also presented and discussed. Whenever possible, structure-activity relationships were explored. Keywords: ABTS assay; antioxidant; chelation studies; DPPH radical; flavonoids; FRAP; lipid peroxidation; natural products; prenyl; ROS 1. Introduction Flavonoids are oxygen heterocyclic compounds widespread throughout the plant kingdom. This class of secondary metabolites are responsible for the color and aroma of many flowers, fruits, medicinal plants and plant-derived beverages and play an important protective role in plants against different biotic and abiotic stresses. Flavonoids are also known for their nutritional value and positive therapeutic effects on humans and animals [1,2]. The basic structure of a flavonoid consists of a dibenzo-γ-pyrone framework and the degree of unsaturation and oxidation of the C ring defines the subclasses of this compounds such as chalcones, flavones, isoflavones and their dehydro derivatives. Different substitution patterns that includes hydroxyl, methyl, methoxyl, prenyl and glycosyl groups can be attached to the flavonoid unit, varying the number, type and position of the substituents [3]. Over the past two decades there have been an increasing number of reports on the isolation of prenylated flavonoids, belonging to the Leguminosae and Moraceae families, with some distribution among others such as Cannabaceae, Euphorbiaceae, Guttiferae, Rutaceae, Umbelliferae, etc. [4,5]. Barron and Ibrahim reviewed more than 700 prenylated flavonoids up to the end of 1994 [5] and Botta et al. compiled it from 1995 till 2004 [6]. Most of the prenylated flavonoids have been identified as chalcones, dihydrochalcones, flavones, flavanones, flavonols and isoflavones, being C-prenyl more common than O-prenyl derivatives. In addition, prenyl side-chains can include variations in the number of carbons, oxidation, dehydration, cyclization or reduction to give a huge array of compounds with an impressive antioxidant potential [4]. Along the manuscript, “prenyl” will be used a general term to identify prenyl/isopentenyl, geranyl and farnesyl side chains as well as furano or dimethylchromano derivatives. The beneficial effects of flavonoids appear to be related to the various biological and pharmacological activities as anti-inflammatory, antimicrobial, antioxidant, antitumor, estrogenic, Molecules 2020, 25, 696; doi:10.3390/molecules25030696 www.mdpi.com/journal/molecules Molecules 2020, 25, 696 2 of 33 and immunosuppressive properties, among others. According to the literature, prenylation of flavonoids can induce an increase in their bioactivities namely as antimicrobial and anticancer agents, however, a decrease in the bioavailability and plasma absorption is recorded, when compared to related non-prenylated derivatives [7–11]. TheMolecules available 2019, 24 information, x FOR PEER REVIEW concerning the antioxidant activity of prenylated flavonoids2 of 32 is sparse, appearing some studies in a couple of review papers [7,8]. Taking into account our both interest (organicflavonoids and medicinal can induce chemistry) an increase for in the their identification bioactivities namely of prenylated as antimicrobial flavonoids and anticancer that has agents, already been tested forhowever, their antioxidanta decrease in activity,the bioavailability a systematic and pl revisionasma absorption of the literature is recorded, was when made compared using PubMedto ® related non-prenylated derivatives [7–11]. and Web of Knowledge® databases. The research was limited to the 21st century, with publications The available information concerning the antioxidant activity of prenylated flavonoids is sparse, from Januaryappearing 2000 some to Octoberstudies in 2019, a couple using of thereview terms papers “prenyl”, [7,8]. Taking “flavonoid”, into account “prenylated our both interest flavonoid” in combination(organic with and “antioxidant”, medicinal chemistry) as keywords. for the identification After a careful of prenylated analysis offlavonoids nearly one thathundred has already of papers, we excludedbeen tested many for of their them antioxidant due to the activity, absence a syst ofematic the antioxidant revision of the eff ectsliterature for thewas target made compounds,using leavingPubMed® 59 papers and to beWeb included of Knowledge and discussed® databases. in The the research present was review. limited to the 21st century, with Herein,publications it is our from propose January 2000 to organize to October and 2019, summarize using the terms the “prenyl”, structural “flavonoid”, and chemical “prenylated diversity of flavonoid” in combination with “antioxidant”, as keywords. After a careful analysis of nearly one naturalhundred and synthetic of papers, flavonoids we excluded applied many of as them antioxidants, due to the absence providing of the theantioxidant main ineffects vitro forand the in vivo methodologiestarget compounds, used in thisleaving field 59 ofpapers research. to be included This information and discussed is in very the present useful review. for organic chemists to know the trendsHerein, of it structure-antioxidant is our propose to organize activity and summa relationship,rize the structural in order and to develop chemical ediversityfficient routesof for the totalnatural synthesis and synthetic of natural flavonoids derivatives, applied to as develop antioxidants, improved providing strategies the main to in maximize vitro and in the vivo synthesis of suchmethodologies natural and syntheticused in this compoundsfield of research. or This even information in the design is very and useful synthesis for organic of chemists novel flavonoids to know the trends of structure-antioxidant activity relationship, in order to develop efficient routes for with different prenyl substituents in different positions of the main skeleton. So, the studies here the total synthesis of natural derivatives, to develop improved strategies to maximize the synthesis summarizedof such and natural the promisingand synthetic results compounds obtained or even highlights in the design the importance and synthesis of of prenylated novel flavonoids flavonoids as potentialwith antioxidant different prenyl agents. substituents in different positions of the main skeleton. So, the studies here summarized and the promising results obtained highlights the importance of prenylated flavonoids 2. Naturalas potential Occurrence antioxidant and Structuralagents. Variation of Prenylflavonoids with Antioxidant Activity From2. Natural the natural Occurrence prenylflavonoids and Structural Variation with antioxidant of Prenylflavonoids activity mostwith Antioxidant of them are Activity from Moraceae and Fabaceae families with a limited number of derivatives from Apiaceae, Asteraceae, Cannabaceae, From the natural prenylflavonoids with antioxidant activity most of them are from Moraceae and Euphorbiaceae.and Fabaceae families with a limited number of derivatives from Apiaceae, Asteraceae, Cannabaceae, Theand most Euphorbiaceae. common substitution among the flavonoid family with antioxidant properties is representedThe by most the 3,3-dimethylallylcommon substitution chain. among the l,l-Dimethylallyl, flavonoid family geranyl,with antioxidant lavandulyl properties and is farnesyl units canrepresented also be by present the 3,3-dimethylallyl in such structures. chain. l,l-Dime Theythylallyl, can be geranyl, found lavandulyl in chalcones, and farnesyl dihydrochalcones, units flavones,can flavanones, also be present isoflavones, in such structures. xanthone-type They can andbe found other in complex chalcones, molecules dihydrochalcones, (Figure flavones,1). As referred flavanones, isoflavones, xanthone-type and other complex molecules (Figure 1). As referred before, before, C-prenylated compounds are more abundant than O-prenylated ones, being most of the C-prenylated compounds are more abundant than O-prenylated ones, being most of the O- O-prenylflavonoidsprenylflavonoids obtained obtained by by synthesis. synthesis. FigureFigure 1. Chemical 1. Chemical structures structures of of some some flavonoidsflavonoids and and main main prenylation prenylation patterns. patterns. Molecules 2020, 25, 696 3 of 33 Chalcone derivatives. This is the most abundant class of prenylated flavonoids with antioxidant activity, being a great number of the natural derivatives obtained from different extracts of hops [12–17], belonging to the Cannabaceae family. A limited number of derivatives
Recommended publications
  • Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An in Silico Study
    nutrients Article Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An In Silico Study Tobias Goris 1,* , Rafael R. C. Cuadrat 2 and Annett Braune 1 1 Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] 2 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] * Correspondence: [email protected] Abstract: Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackia isoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria.
    [Show full text]
  • RNA-Sequencing Analysis Reveals Betalains Metabolism in the Leaf of Amaranthus Tricolor L
    RESEARCH ARTICLE RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. Shengcai Liu1☯, Xueli Zheng1☯, Junfei Pan1, Liyun Peng1, Chunzhen Cheng1, Xiao Wang1, 1 1 1 1,2 1 Chunli Zhao , Zihao Zhang , Yuling Lin , Xu XuHan *, Zhongxiong LaiID * 1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, France ☯ These authors contributed equally to this work. * [email protected](ZL); [email protected] (XXH) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Amaranth plants contain large amounts of betalains, including betaxanthins and betacya- nins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, beta- OPEN ACCESS cyanin, and betaxanthin was 2±5-fold higher in the red leaf sectors than in the green leaf Citation: Liu S, Zheng X, Pan J, Peng L, Cheng C, sectors. Moreover, a transcriptome database was constructed for the red and green sectors Wang X, et al. (2019) RNA-sequencing analysis of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to ana- reveals betalains metabolism in the leaf of Amaranthus tricolor L.. PLoS ONE 14(4): lyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that e0216001. https://doi.org/10.1371/journal. many unigenes are involved in betalain metabolic pathways. The potential relationships pone.0216001 between diverse metabolic pathways and betalain metabolism were analyzed.
    [Show full text]
  • Combinatorial Biosynthesis of Non-Bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi
    J. Antibiot. 61(12): 709–728, 2008 THE JOURNAL OF REVIEW ARTICLE ANTIBIOTICS Combinatorial Biosynthesis of Non-bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi Received: August 1, 2008 / Accepted: October 14, 2008 © Japan Antibiotics Research Association Abstract One of the approaches of combinatorial biosynthesis is combining genes from different organisms and designing a new set of gene clusters to produce bioactive compounds, leading to diversification of both chemical and natural product libraries. This makes efficient use of the potential of the host organisms, especially when microorganisms are used. An Escherichia coli system, in which artificial biosynthetic pathways for production of plant-specific medicinal polyketides, such as flavonoids, stilbenoids, isoflavonoids, and curcuminoids, are assembled, has been designed and expressed. Starting with amino acids tyrosine and phenylalanine as substrates, this system yields naringenin, resveratrol, genistein, and curcumin, for example, all of which are beneficial to human health because of their wide variety of biological activities. Supplementation of unnatural carboxylic acids to the recombinant E. coli cells carrying the artificial pathways by precursor-directed biosynthesis results in production of unnatural compounds. Addition of decorating or modification enzymes to the artificial pathway leads to production of natural and unnatural flavonols, flavones, and methylated resveratrols. This microbial system is promising for construction of larger libraries by employing other polyketide synthases and decorating enzymes of various origins. In addition, the concept of building and expressing artificial biosynthetic pathways for production of non-bacterial and unnatural compounds in microorganisms should be successfully applied to production of not only plant-specific polyketides but also many other useful compound classes.
    [Show full text]
  • Chromanone-A Prerogative Therapeutic Scaffold: an Overview
    Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-021-05858-3 REVIEW-CHEMISTRY Chromanone‑A Prerogative Therapeutic Scafold: An Overview Sonia Kamboj1,2 · Randhir Singh1 Received: 28 September 2020 / Accepted: 9 June 2021 © King Fahd University of Petroleum & Minerals 2021 Abstract Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor diference from chromone but exhibits signifcant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman- 4-one analogues are addressed to signify the importance of chromanone as a versatile scafold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most efective and cost-efective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development. Keywords Chroman-4-one · Chromone · Pharmacological activity · Synthesis · Analogues 1 Introduction dihydropyran (ring B) which relates to chromane, chromene, chromone and chromenone, but the absence of C2-C3 dou- Chroman-4-one is one of the most important heterobicyclic ble bond of chroman-4-one skeleton makes a minor difer- moieties existing in natural compounds as polyphenols and ence (Table 1) from chromone and associated with diverse as synthetic compounds like Taxifolin, also known as chro- biological activities [1].
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Producing Cultured Cells of Sophora Flavescens
    Plant Biotechnology 21(5), 355–359 (2004) Original Paper Metabolism of administered (2RS)-naringenin in flavonoid- producing cultured cells of Sophora flavescens Hirobumi Yamamoto*, Hiroki Kuribayashi, Yasuharu Seshima, Ping Zhao1, Isao Kouno1, Goro Taguchi2, Koichiro Shimomura Plant Regulation Research Center, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura, Gunma 374-0193, Japan 1Medicinal Plant Garden, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan 2Division of Gene Research, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Nagano 386-8567, Japan *E-mail: [email protected] Tel: +81-276-82-9206 Fax: +81-276-82-9206 Received August 30, 2004; accepted October 4, 2004 (Edited by K. Yazaki) Abstract Cultured cells of Sophora flavescens produce (2S)-naringenin-derived prenylated flavanone sophoraflavanone G and liquiritigenin-derived trifolirhizin 6Ј-O-malonate. The regulation of flavonoid biosynthesis was examined by analyzing the metabolites produced in the cultured cells fed (2RS)-naringenin. The amount of sophoraflavanone G in cells fed 0.1 or 0.3 mM (2RS)-naringenin was two-fold that in control cells, although the conversion ratio was only 5 to 10% of the administered (2S)-naringenin. On the other hand, (2R)-naringenin, which does not occur naturally, was efficiently converted into its 4Ј,7-di-O-b-D-glucoside. (2S)-Naringenin prenylation activity was higher at the logarithmic growth stage. The cells fed (2RS)-naringenin at a lower concentration (below 0.1 mM), accumulated sophoraflavanone G as the main prenylated flavanone.
    [Show full text]
  • Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels
    7586 J. Agric. Food Chem. 2004, 52, 7586−7592 Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels JOHN A. MANTHEY† Citrus and Subtropical Products Laboratory, Southern Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, 600 Avenue S N.W., Winter Haven, Florida 33881 Orange peel molasses, a byproduct of juice production, contains high concentrations of phenols, including numerous flavanone and flavone glycosides, polymethoxylated flavones, hydroxycinnamates, and other miscellaneous phenolic glycosides and amines. Extensive fractionation of these phenols was achieved by adsorption, ion exchange, and size exclusion chromatography. Size exclusion chromatography effectively separated the different classes of flavonoids in ultrafiltered molasses, including the polymethoxylated flavones, flavanone-O-trisaccharides, flavanone- and flavone-O- disaccharides, and, finally, flavone-C-glycosides. Mass spectral analysis of the early-eluting flavonoid fractions off the size exclusion column revealed a broad collection of minor-occurring flavone glycosides, which included, in part, glycosides of limocitrin, limocitrol, and chrysoeriol. Most hydroxycinnamates in the molasses were recovered by ion exchange chromatography, which also facilitated the recovery of fractions containing many other miscellaneous phenols. Total antioxidant levels and total phenolic contents were measured for the separate categories of phenols in the molasses. Inhibition of the superoxide anion reduction of nitroblue tetrazolium showed that a significant amount of the total antioxidant activity in orange peel molasses was attributable to minor-occurring flavones. The miscellaneous phenolic-containing fractions, in which a large portion of the total phenolic content in molasses occurred, also constituted a major portion of the total antioxidants in ultrafiltered molasses.
    [Show full text]
  • Glycosides in Lemon Fruit
    Food Sci. Technol. Int. Tokyo, 4 (1), 48-53, 1998 Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit Yoshiaki MIYAKE,1 Kanefumi YAMAMOT0,1 Yasujiro MORIMITSU2 and Toshihiko OSAWA2 * Central Research Laboratory of Pokka Corporation, Ltd., 45-2 Kumanosyo, Shikatsu-cho, Nishikasugai-gun, Aichi 481, Japan 2Department of Applied Biological Sciences, Nagoya University, Nagoya 46401, Japan Received June 12, 1997; Accepted September 27, 1997 We investigated the antioxidative flavonoid glycosides in the peel extract of lemon fruit (Citrus limon). Six flavanon glycosides: eriocitrin, neoeriocitrin, narirutin, naringin, hesperidin, and neohesperidin, and three flavone glycosides: diosmin, 6~-di- C-p-glucosyldiosmin (DGD), and 6- C-p-glucosyldiosmin (GD) were identified by high- performance liquid chromatography (HPLC) analysis. Their antioxidative activity was examined using a linoleic acid autoxidation system. The antioxidative activity of eriocitrin, neoeriocitrin and DGD was stronger than that of the others. Flavonoid glycosides were present primarily in the peel of lemon fruit. There was only a small difference in the content of the flavonoid glycosides of the lemon fruit juice from various sources and varieties. Lemon fruit contained abundant amounts of eriocitrin and hesperidin and also contained narirutin, diosmin, and DGD, but GD, neoeriocitrin, naringin, and neohesperidin were present only in trace amounts. The content of DGD, GD, and eriocitrin was especially abundant in lemons and limes; however, they were scarcely found in other citrus fruits. The content of flavonoid compounds in lemon juice obtained by an in-line extractor at a juice factory was more abundant than that obtained by hand-squeezing. These compounds were found to be stable even under heat treatment conditions (121'C, 15 min) in acidic solution.
    [Show full text]
  • GRAS Notice (GRN) No. 719, Orange Pomace
    GRAS Notice (GRN) No. 719 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm SAFETY EVALUATION DOSSIER SUPPORTING A GENERALLY RECOGNIZED AS SAFE (GRAS) CONCLUSION FOR ORANGE POMACE SUBMITTED BY: PepsiCo, Inc. 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Andrey Nikiforov, Ph.D. Toxicology Regulatory Services, Inc. 154 Hansen Road, Suite 201 Charlottesville, VA 22911 July 3, 2017 Table of Contents Part 1. SIGNED STATEMENTS AND CERTIFICATION ...........................................................1 A. Name and Address of Notifier .............................................................................................1 B. Name of GRAS Substance ...................................................................................................1 C. Intended Use and Consumer Exposure ................................................................................1 D. Basis for GRAS Conclusion ................................................................................................2 E. Availability of Information ..................................................................................................3 Part 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT.................................................................................................4
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Noncatalytic Chalcone Isomerase-Fold Proteins in Humulus Lupulus Are Auxiliary Components in Prenylated Flavonoid Biosynthesis
    Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis Zhaonan Bana,b, Hao Qina, Andrew J. Mitchellc, Baoxiu Liua, Fengxia Zhanga, Jing-Ke Wengc,d, Richard A. Dixone,f,1, and Guodong Wanga,1 aState Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eBioDiscovery Institute, University of North Texas, Denton, TX 76203; and fDepartment of Biological Sciences, University of North Texas, Denton, TX 76203 Contributed by Richard A. Dixon, April 25, 2018 (sent for review February 6, 2018; reviewed by Joerg Bohlmann and Mattheos A. G. Koffas) Xanthohumol (XN) and demethylxanthohumol (DMX) are special- braries have been deposited in the TrichOME database [www. ized prenylated chalconoids with multiple pharmaceutical appli- planttrichome.org (18)], and numerous large RNAseq datasets from cations that accumulate to high levels in the glandular trichomes different hop tissues or cultivars have also been made publically of hops (Humulus lupulus L.). Although all structural enzymes in available. By mining the hops transcriptome data, we and others have the XN pathway have been functionally identified, biochemical functionally identified several key terpenophenolic biosynthetic en- mechanisms underlying highly efficient production of XN have zymes from hop glandular trichomes (1, 18–23); these include car- not been fully resolved. In this study, we characterized two non- boxyl CoA ligase (CCL) genes and two aromatic prenyltransferase catalytic chalcone isomerase (CHI)-like proteins (designated as (PT) genes (HlPT1L and HlPT2) (22, 23).
    [Show full text]
  • Cushnie TPT, Lamb AJ. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356
    Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356. PMID: 16323269 DOI: 10.1016/j.ijantimicag.2005.09.002 The journal article above is freely available from the publishers at: http://www.idpublications.com/journals/PDFs/IJAA/ANTAGE_MostCited_1.pdf and also... http://www.ijaaonline.com/article/S0924-8579(05)00255-4/fulltext Errata for the article (typesetting errors by Elsevier Ireland) are freely available from the publishers at: http://www.ijaaonline.com/article/S0924-8579(05)00352-3/fulltext and also... http://www.sciencedirect.com/science/article/pii/S0924857905003523 International Journal of Antimicrobial Agents 26 (2005) 343–356 Review Antimicrobial activity of flavonoids T.P. Tim Cushnie, Andrew J. Lamb ∗ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, UK Abstract Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement.
    [Show full text]