European Parasitoids of the Cherry Bark Tortrix: Assessing the Ichneumonid, Campoplex Dubitator, As a Potential Classical Biological Control Agent for North America

Total Page:16

File Type:pdf, Size:1020Kb

European Parasitoids of the Cherry Bark Tortrix: Assessing the Ichneumonid, Campoplex Dubitator, As a Potential Classical Biological Control Agent for North America EUROPEAN PARASITOIDS OF THE CHERRY BARK TORTRIX: ASSESSING THE ICHNEUMONID, CAMPOPLEX DUBITATOR, AS A POTENTIAL CLASSICAL BIOLOGICAL CONTROL AGENT FOR NORTH AMERICA Wade H. Jenner BSc, Augustana University College 1999 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Biological Sciences 0Wade H. Jenner 2003 SIMON FRASER UNIVERSITY November, 200 3 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Wade Harley Jenner Degree: Master of Science Title of Thesis: European parasitoids of the cherry bark tortrix: assessing the ichneumonid, Campoplex dubitator, as a potential classical biological control agent for North America. Examining Committee: Chair: Dr. R.C. Ydenberg - Dr. B.D.Roitberg. Professor, Senior Supervisor Department of Biological Sciences, S.F.U. Dr. U. Kuhlmann, ~ead,~gric;ltural Pest Research CAB1 Bioscience Centre DV! J.E. Cossentine, Research Scientist Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada Department bf Biological ~kiences,S.F.U. a Dr. J] Myers, Professor Dep rtment of Zoology and Plant Science, U.B.C. Pd ic Examiner - / ,/, ( .; ,- 3 .? '-, i-L/ ,{,iL" 1 a4?s Date Approved PARTIAL COPYRIGHT LICENCE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of ThesislProjectlExtended Essay European parasitoids of the cherry bark tortrix: assessing the ichneumonid, Campoplex dubitator, as a potential classical biological control agent for North America. Author: (signature) Wade Harley Jenner (name> (date) Abstract The cherry bark tortrix (=CBT), Enarmonia formosana Scopoli (Lepidoptera: Tortricidae), is poorly known in its native Palaearctic range. However, since its recent introduction into North America, this species poses a threat to the nursery and orchard industries in British Columbia, Washington State, and Oregon State. As part of a classical biological control approach to managing this bark-boring pest, the objective of this thesis research was to find European parasitoids of the CBT for release in North America. In total, 13 parasitoid species were reared from CBT larvae and pupae collected in Europe between 2000 and 2002. However, 12 of these species were collected only very rarely, suggesting weak associations with the CBT, while the larval parasitoid, Campoplex dubitator Horstmann (Hymenoptera: Ichneumonidae), was responsible for 99% of the larval parasitism and 85% of the larval and pupal parasitism combined. Hence, despite a wide distribution of parasitism throughout the southern Rhine Valley, Black Forest, and northern Jura Mountains, C. dubitator appeared to be the only parasitoid having a substantial impact on CBT populations. Campoplex dubitator was therefore selected for a more thorough evaluation of its role as a biological control agent. A method was developed for small- scale rearing of C. dubitator using host larvae of all but the first instar, and information on the parasitoid's reproductive biology was obtained. In olfactometers, females were shown to respond to volatile cues emitted from cherry bark and host frass, but not from the host larvae themselves. When the attractiveness of uninfested cherry bark and host frass was compared, parasitoids demonstrated a strong preference for host frass. This observation supports the philosophy that foragers should respond more strongly to stimuli that are more directly linked to their target hosts, since those cues provide more reliable information regarding host availability and location. This knowledge of C. dubitator's foraging strategy may also indicate the types of habitats or hosts this species might be most likely to encounter, which could be valuable in the selection of non-target species to use in future host-range testing, Finally, in a patch time allocation experiment, C. dubitator females invested a greater search effort on patches of higher host density. The observation from this experiment that C. dubitator could not accurately discriminate against previously parasitised hosts, or effectively distinguish between empty and occupied frass tubes, may be useful in explaining the inverse density dependence that was observed in the field. Acknowledgements First and foremost, I thank my advisory committee, which has been very valuable in helping me get my project off the ground, securing project funding, and providing sound guidance each step of the way. Our collaboration with the CABI Bioscience Centre in Switzerland was a key element in conducting the European field studies. I was also able to prolong my data collection by maintaining experimental insects in SFU's Global Forest Quarantine Facility, construction of which was completed through financial support from Global Forest (GF-18-2000-SFU-2). We depended heavily on the taxonomic assistance provided by Dr. Klaus Horstmann and Dr. Hannes Baur, which was a crucial component of this programme. The speedy preparation of meridic diet by Linda Jensen - whenever we needed it - was never taken for granted. I owe thanks to the SFU Department of Biological Sciences for financial support and to John Mathies (Cannor Nurseries Ltd.) whose donation made it possible for me to obtain a Graduate Engineering and Technology Scholarship through the Science Council of British Columbia. I would like to give special thanks to Manfred Grossrieder, Erik Osborn, and other colleagues on the Swiss CABI Bioscience team who took part in field excursions, as well to those who were with me when I learned that, while not glamorous, washing one million Petri dishes can actually be fun! I would like to acknowledge Emma Hunt and the rest of the CABI clan (2000 to 2002) who also played a major role in helping me to unwind at the end of a long day. If it were not for them, I may have never experienced all the joys that Switzerland has to offer. Finally, I am grateful for the patience and relaxed manner of the many farmers who caught us carving our signatures into the bark of their cherry trees. One quickly learns to speak German or French when one must explain why one's chisel is sticking out the side of an orchard cherry tree! Table of Contents .. Approval .....................................................................................................................................11 ... Abstract .................................................................................................................................. 111 Acknowledgements ....................................................................................................................iv Table of Contents ............................................................................................................................ v List of Figures .......................................................................................................................... VIII List of Tables ...............................................................................................................................x CHAPTER 1 .................................................................................................. 1 General Introduction and Literature Review ............................................ 1 Abstract ........................................................................................................................................ 1 1.2 Biology and Ecology of the Cherry Bark Tortrix ..................................................................2 1.3 Assessment of Pest Risk ........................................................................................................ 5 1.4 Research Objectives ............................................................................................................... 7 1.4.1 Survey of Parasitoid Community .................................................................................... 7 1.4.2 Evaluation of a Potential Agent ......................................................................................8 1.5 References ............................................................................................................................ 11 CHAPTER 2 ................................................................................................ 14 Distribution. phenology. and field parasitism of the cherry bark tortrix ....................................................................................................................... 14 Abstract ................................................................................................................................... 14 2.1 Introduction ..........................................................................................................................15 2.2 Materials and Methods ......................................................................................................... 16 2.2.1 CBT
Recommended publications
  • ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera
    ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera (Ichneumonidae: Campopleginae and Ichneumoninae) in Great Smoky Mountains National Park and Eastern North American Forests (Under the direction of JOHN PICKERING) I examined species richness and composition of Campopleginae and Ichneumoninae (Hymenoptera: Ichneumonidae) parasitoids in cut and uncut forests and before and after fire in Great Smoky Mountains National Park, Tennessee (GSMNP). I also compared alpha and beta diversity along a latitudinal gradient in Eastern North America with sites in Ontario, Maryland, Georgia, and Florida. Between 1997- 2000, I ran insect Malaise traps at 6 sites in two habitats in GSMNP. Sites include 2 old-growth mesic coves (Porters Creek and Ramsay Cascades), 2 second-growth mesic coves (Meigs Post Prong and Fish Camp Prong) and 2 xeric ridges (Lynn Hollow East and West) in GSMNP. I identified 307 species (9,716 individuals): 165 campoplegine species (3,273 individuals) and a minimum of 142 ichneumonine species (6,443 individuals) from 6 sites in GSMNP. The results show the importance of habitat differences when examining ichneumonid species richness at landscape scales. I report higher richness for both subfamilies combined in the xeric ridge sites (Lynn Hollow West (114) and Lynn Hollow East (112)) than previously reported peaks at mid-latitudes, in Maryland (103), and lower than Maryland for the two cove sites (Porters Creek, 90 and Ramsay Cascades, 88). These subfamilies appear to have largely recovered 70+ years after clear-cutting, yet Campopleginae may be more susceptible to logging disturbance. Campopleginae had higher species richness in old-growth coves and a 66% overlap in species composition between previously cut and uncut coves.
    [Show full text]
  • 1. Cherry Bark Tortrix (CBT), Cherry Washington. Thetrees Have
    III. Stone Fruits a. Biology 1. Cherry Bark Tortrix (CBT), cherry Michael W. Klaus Washington State Department ofAgriculture 2015 S. First Street Yakima, WA 98903 Thefirst U.S. detection of CBT was reported by WSDA on March 29,1991. The find wasa larval collection from an ornamental cherry treeat the PeaceArch StatePark, Blaine, Whatcom County, Washington. Thetrees have extensive tunneling throughout the bark of thetrunk andthe bark ofthe larger limbs. The tunneling has nearly girdled thetrees. Park gardeners consider these sixty yearold Mt. Fuji cherry trees to bea total loss andwill be removing them soon. The cherry bark tortrix (CBT), Enarmonia formosana (Scopoli), isnative to Europe and Siberia. Itwas first mentioned as a pestofstonefruits in Europe by Kollar in 1837 andas a pest in the British Isles byTheobald (1909). CBT has been reported tocause serious damage in stone fruit, apple, pearand other trees(Thomsen 1920, Samal 1926). CBT issometimes locally serious, but is generally considered tobe a pest of minor importance in the British Isles (Massee,1954). Biology and Identification CBT feeds on the bark and sapwood ofa variety ofplants ofthe family Rosaceaeincluding Prunus (cherry, plum, peach, apricot, nectarine and almond), Malus (apple), Pvrus (pear), Pyracantha (firethom), Sorbus(mountain ash) and Cvdonia (quince). Infested hosts identified in Washington to date (via larval collections, voucher specimens in WSDA Yakima collection) havebeen mature cherryand apple trees. A CBT infestation of mountain ash inVancouver, B.C. Canadawas reported in June of 1992. CBT is a moth in the family Tortricidae. It is related to another important tortricid applepest, the codling moth. Codling moth was once named Enarmonia pomonella.
    [Show full text]
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • Data Sheets on Quarantine Pests
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Cydia prunivora IDENTITY Name: Cydia prunivora (Walsh) Synonyms: Grapholitha prunivora (Walsh) Enarmonia prunivora Walsh Semasia prunivora Walsh Laspeyresia prunivora Walsh Taxonomic position: Insecta: Lepidoptera: Tortricidae Common names: Lesser appleworm, plum moth (English) Petite pyrale (French) Bayer computer code: LASPPR EPPO A1 list: No. 36 EU Annex designation: II/A1 - as Enarmonia prunivora HOSTS The main natural host is Crataegus spp., especially the larger-fruited species such as C. holmesiana. C. prunivora readily attacks apples, plums and cherries. It has been recorded on peaches, roses and Photinia spp. Larvae may also develop in galls of Quercus and Ulmus. For more information, see Chapman & Lienk (1971). GEOGRAPHICAL DISTRIBUTION C. prunivora is indigenous on wild Crataegus spp. in eastern North America (north-eastern states of USA and adjoining provinces of Canada) and has spread onto fruit trees in other parts of North America (western Canada and USA). EPPO region: Absent. Asia: China (Heilongjiang only, unconfirmed). The record given for India in the previous edition is erroneous. North America: Canada (British Columbia, eastern provinces), USA (practically throughout). EU: Absent. Distribution map: See CIE (1975, No. 341). BIOLOGY The life and seasonal history is similar to that of the European codling moth, Cydia pomonella. C. prunivora overwinters as a full-grown larva in a cocoon in debris on the ground or in crevices in the trunks of host trees. In the western fruit district of New York State, USA, and in Ontario, Canada, pupation takes place in May and lasts 2-3 weeks.
    [Show full text]
  • Oemona Hirta
    EPPO Datasheet: Oemona hirta Last updated: 2021-07-29 IDENTITY Preferred name: Oemona hirta Authority: (Fabricius) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Cerambycidae Other scientific names: Isodera villosa (Fabricius), Oemona humilis Newman, Oemona villosa (Fabricius), Saperda hirta Fabricius, Saperda villosa Fabricius Common names: lemon tree borer view more common names online... EPPO Categorization: A1 list more photos... view more categorizations online... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: OEMOHI Notes on taxonomy and nomenclature Lu & Wang (2005) revised the genus Oemona, which has 4 species: O. hirta, O. plicicollis, O. separata and O. simplicicollis. They provided an identification key to species and detailed descriptions. They also performed a phylogenetic analysis of all species, suggesting that O. hirta and O. plicicollis are sister species and most similar morphologically. HOSTS O. hirta is a highly polyphagous longhorn beetle. Its larvae feed on over 200 species of trees and shrubs from 63 (Lu & Wang, 2005; Wang, 2017) to 81 (EPPO, 2014) families. Its original hosts were native New Zealand plants, but it expanded its host range to many species exotic to New Zealand, ranging from major fruit, nut, forest and ornamental trees to shrubs and grapevines. Host list: Acacia dealbata, Acacia decurrens, Acacia floribunda, Acacia longifolia, Acacia melanoxylon, Acacia pycnantha, Acer pseudoplatanus, Acer sp., Aesculus hippocastanum, Agathis australis, Albizia julibrissin, Alectryon excelsus, Alnus glutinosa, Alnus incana, Aristotelia serrata, Asparagus setaceus, Avicennia marina, Avicennia resinifera, Azara sp., Betula nigra, Betula pendula, Betula sp., Brachyglottis greyi, Brachyglottis repanda, Brachyglottis rotundifolia, Buddleia davidii, Camellia sp., Carmichaelia australis, Casimiroa edulis, Cassinia leptophylla, Cassinia retorta, Castanea sativa, Casuarina cunninghamiana, Casuarina sp., Celtis australis, Cestrum elegans, Chamaecyparis sp., Chamaecytisus prolifer subsp.
    [Show full text]
  • International Symposium on Biological Control of Arthropods 424 Poster Presentations ______
    POSTER PRESENTATIONS ______________________________________________________________ Poster Presentations 423 IMPROVEMENT OF RELEASE METHOD FOR APHIDOLETES APHIDIMYZA (DIPTERA: CECIDOMYIIDAE) BASED ON ECOLOGICAL AND BEHAVIORAL STUDIES Junichiro Abe and Junichi Yukawa Entomological Laboratory, Kyushu University, Japan ABSTRACT. In many countries, Aphidoletes aphidimyza (Rondani) has been used effectively as a biological control agent against aphids, particularly in greenhouses. In Japan, A. aphidimyza was reg- istered as a biological control agent in April 1999, and mass-produced cocoons have been imported from The Netherlands and United Kingdom since mass-rearing methods have not yet been estab- lished. In recent years, the effect of imported A. aphidimyza on aphid populations was evaluated in greenhouses at some Agricultural Experiment Stations in Japan. However, no striking effect has been reported yet from Japan. The failure of its use in Japan seems to be caused chiefly by the lack of detailed ecological or behavioral information of A. aphidimyza. Therefore, we investigated its ecological and behavioral attributes as follows: (1) the survival of pupae in relation to the depth of pupation sites; (2) the time of adult emergence in response to photoperiod during the pupal stage; (3) the importance of a hanging substrate for successful mating; and (4) the influence of adult size and nutrient status on adult longev- ity and fecundity. (1) A commercial natural enemy importer in Japan suggests that users divide cocoons into groups and put each group into a plastic container filled with vermiculite to a depth of 100 mm. However, we believe this is too deep for A. aphidimyza pupae, since under natural conditions mature larvae spin their cocoons in the top few millimeters to a maxmum depth of 30 mm.
    [Show full text]
  • Area-Acct & Title-Project Investigator4
    Washington State University Sponsored Programs Services Area/Budget/Account - FY 03 - Direct and Facilities & Administrative Costs - 06/30/2003 AR BUD CFDA SPG ACCOUNT EA GET NO M ACCOUNT DIRECT COSTS F&A COSTS TOTAL PRIMARY PI OTHER PI TITLE 1 2926 12-999 12F 2926-0001 25,037.85 0 25,037.85 HERBST C JOHANSEN W / B GRANT BASIC AND ADVANCE 1 2933 84-342 12G 2933-0004 5,152.80 412.22 5,565.02 HALL L BROWN G / BROWPREPARE TOMORROW'S TEACHERS/USE TECH 1 2934 - 14N 2934-0010 28,589.78 0 28,589.78 KILGORE S STONE C VISIBLE KNOWLEDGE PROJECT 1 2934 84-336 12G 2934-0011 13,374.87 1,069.98 14,444.85 LAW R MOORE M CO-TEACH 1 2934 45-999 12W 2934-0012 -454.49 0 -454.49 KILGORE S CONDON W NMC VISUAL EVIDENCE & US PAST 1 2936 84-116 12G 2936-0007 134,239.30 8,594.81 142,834.11 CONDON W KELLY-RILEY D / FOSTER CRITICAL THINKING/FACULTY PRACTICE 2 1170 84-042 12G 1170-0011 32,525.00 2,602.01 35,127.01 JAMISON A STUDENT SUPPORT SERVICES PROGRAM 2 1170 84-042 12G 1170-0012 125.62 0 125.62 JAMISON A STUDENT SUPPORT SERVICES PROGRAM 2 1170 84-042 12G 1170-0013 158,877.13 7,404.48 166,281.61 JAMISON A STUDENT SUPPORT SERVICES PROG 2 1170 84-042 12G 1170-0014 2,488.62 0 2,488.62 JAMISON A STUDENT SUPPORT SERVICES PROG SUPPL 2 1170 84-042 12G 1170-0015 9,800.00 0 9,800.00 JAMISON A STUDENT SUPPORT SERVICES PROG GRANT AID 2 2968 - 14A 2968-0036 0 270.95 270.95 VOSS E SPECIAL NEEDS CAPACITY PROJECT 2 2968 - 14A 2968-0037 0 117.14 117.14 VOSS E INFANT CARE PROJECT 2 2968 93-596 14A 2968-0038 721.14 80.12 801.26 CILLAY V VOSS E CHILD CARE RES & REF/BLDG BLOCKS
    [Show full text]
  • Organisme De Quarantaine OEPP Préparé Par Le CABI Et L'oepp Pour L'ue Sous Contrat 90/399003
    Organisme de quarantaine OEPP Préparé par le CABI et l'OEPP pour l'UE sous Contrat 90/399003 Fiche informative sur les organismes de quarantaine Cydia packardi IDENTITE Nom: Cydia packardi (Zeller) Synonymes: Grapholita packardi Zeller Steganoptycha pyricolana Murtfeldt Enarmonia packardi (Zeller) Enarmonia pyricolana (Murtfeldt) Laspeyresia packardi (Zeller) Laspeyresia pyricolana (Murtfeldt) Classement taxonomique: Insecta: Lepidoptera: Tortricidae Noms communs: cherry fruitworm (anglais) phalène des cerises (français/canadien) Notes sur la taxonomie et la nomenclature: en raison de différences signalées dans la saisonnalité et dans le cycle de vie sur différentes plantes-hôtes, Chapman & Lienk (1971) ont émis l'idée que C. packardi pourrait comprendre soit plusieurs espèces soit des souches adaptées à des régimes alimentaires. D'ailleurs, Miller (1987) cite Chapman & Lienk (1971) pour justifier sa définition de C. packardi en tant que “complexe d'espèces” bien que ces auteurs aient finalement conclu que C. packardi devait être considéré comme une espèce unique tant que des recherches plus approfondies n'auraient pas été menées. Il faut d'ailleurs remarquer que les caractéristiques biologiques de cette espèce sur pommier ont été définies sur la base d'anciennes études qui ne spécifiaient pas la méthode d'élevage (c'est à dire ne spécifiant pas s'il s'agissait d'études en laboratoire ou en plein champ), et que, de plus, ces caractéristiques n'ont pas été confirmées par des études plus précises. Cependant, l'uniformité des caractères morphologiques des spécimens de C. packardi tend à prouver qu'il s'agirait plutôt d'une espèce unique. Code informatique Bayer: LASPPA Liste A1 OEPP: n° 209 Désignation Annexe UE: II/A1, sous l'appellation Enarmonia packardi PLANTES-HOTES Les principales plantes-hôtes cultivées sont le cerisier, le pommier et Vaccinium spp.
    [Show full text]
  • Ichneumon Sub-Families This Page Describes the Different Sub-Families of the Ichneumonidae
    Ichneumon Sub-families This page describes the different sub-families of the Ichneumonidae. Their ecology and life histories are summarised, with references to more detailed articles or books. Yorkshire species from each group can be found in the Yorkshire checklist. An asterix indicates that a foreign-language key has been translated into English. One method by which the caterpillars of moths and sawflies which are the hosts of these insects attempt to prevent parasitism is for them to hide under leaves during the day and emerge to feed at night. A number of ichneumonoids, spread through several subfamilies of both ichneumons and braconids, exploit this resource by hunting at night. Most ichneumonoids are blackish, which makes them less obvious to predators, but colour is not important in the dark and many of these nocturnal ones have lost the melanin that provides the dark colour, so they are pale orange. They have often developed the large-eyed, yellowish-orange appearance typical of these nocturnal hunters and individuals are often attracted to light. This key to British species is a draft: http://www.nhm.ac.uk/resources-rx/files/keys-for-nocturnal-workshop-reduced-109651.pdf Subfamily Pimplinae. The insects in this subfamily are all elongate and range from robust, heavily- sculptured ichneumons to slender, smooth-bodied ones. Many of them have the 'normal' parasitoid life-cycle (eggs laid in or on the host larvae, feeding on the hosts' fat bodies until they are full- grown and then killing and consuming the hosts) but there are also some variations within this subfamily.
    [Show full text]
  • Pests in Northwestern Washington Prompted a 1994-1995 CAPS Survey of Apple Trees to Identify All Leaf-Feeding Apple Pests Currently in Whatcom County
    6. Biology / Phenology a. Biology 1. Exotic Fruit Tree Pests in Whatcom County, Washington Eric LaGasa Plant Services Div., Wash. St. Dept. of Agriculture P.O. Box 42560, Olympia, Washington 98504-2560 (360) 902-2063 [email protected] The Washington State Department of Agriculture (WSDA) has conducted detection surveys and other field projects for exotic pests since the mid-1980's, with funding provided by the USDA/ APHIS Cooperative Agricultural Pest Survey (CAPS) program. Recent discovery of several exotic fruit tree pests in northwestern Washington prompted a 1994-1995 CAPS survey of apple trees to identify all leaf-feeding apple pests currently in Whatcom County. Additional exotic apple pest species, new to either the region or U.S. were discovered. This paper presents some brief descriptions of species detected in that project, and other exotic fruit tree pest species discovered in northwest Washington since 1985. Table 1. - Exotic Fruit Tree Pests New to Northwestern Washington State - 1985 to 1995 green pug moth - Geometridae: Chloroclystis rectangulata (L.) An early, persistent European pest of apple, pear, cherry and other fruit trees. Larvae attack buds, blossoms, and leaves from March to June. Damage to blossoms causes considerable deformation of fruit. Larvae are common in apple blossoms in Whatcom County, where it was first reared from apple trees in 1994. This pest, new to North America, was also recently detected in the northeastern U.S. Croesia holmiana - Tortricidae: Croesia holmiana (L.) A common pest of many fruit trees and ornamental plants in Europe and Asia, where it is considered a minor problem. Spring larval feeding affects only leaves.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]