Antibiotic Streamlining
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L. -
Histopathology and Laboratory Features of Sexually Transmitted Diseases
Histopath & Labs for STIs Endo, Energy and Repro 2017-2018 HISTOPATHOLOGY AND LABORATORY FEATURES OF SEXUALLY TRANSMITTED DISEASES Dominck Cavuoti, D.O. Phone: 469-419-3412 Email: [email protected] LEARNING OBJECTIVES: • Identify the etiologic agents causing pelvic inflammatory disease and the pathologic changes they produce. • Discuss the characteristic clinical and pathologic findings caused by herpes simplex virus (HSV) infections: a. fever blisters b. genital herpes simplex virus infection c. disseminated neonatal HSV • Describe the pathologic changes produced by Treponema pallidum. • Describe the clinical features and pathologic changes produced by Chlamydia trachomatisand Neisseria gonorrhoeae • Describe the clinical and laboratory features of vaginal infections including: Trichomonas, Candida, and bacterial vaginosis. • Describe the clinical and laboratory features of ectoparasite infections PURPOSE OF THE LECTURE: 1. To describe the various agents of sexually transmitted diseases and their disease manifestations 2. To describe the pathologic features associated with STDs 3. To introduce some of the laboratory aspects of STDs TERMS INTRODUCED IN LECTURE: Condyloma lata Disseminated gonococcal infection Gummatous syphilis Lymphogranuloma venereum Pelvic inflammatory disease Rapid Plasma Reagin (RPR) Salpingitis Syphilis/endarteritis obliterans Venereal Disease Research Laboratory (VDRL) Treponema pallidum particle agglutination (TPPA) Histopath & Labs for STIs Endo, Energy and Repro 2017-2018 MAJOR CONCEPTS EMPHASIZED IN LECTURE I. Syphilis (Will be covered by Dr. Norgard in later lecture). II. Gonorrhea A. Causative agent: Neisseria gonorrhoeae, a Gram negative diplococcus. Humans are the only natural reservoir. Infection is acquired via direct contact with the mucosa of an infected person. The incubation period averages 2-5 days with a range of 1-14 days. -
Gst Gram Staining Learning Objectives the Student Will Use Aseptic Techniques in the Safe Inoculation of Various Forms of Media
GSt Gram Staining Learning Objectives The student will Use aseptic techniques in the safe inoculation of various forms of media. Follow oral and written instructions and manage time in the lab efficiently. Use the bright field light microscope to view microbes under oil immersion, make accurate observations and appropriate interpretations and store the microscope according to lab procedures. Properly prepare a bacterial smear for accurate staining and describe the chemical basis for simple staining and negative staining. Background/Theory Differential staining distinguishes organisms based on their interactions with multiple stains. In other words, two organisms may appear to be different colors. Differential staining techniques commonly used in clinical settings include Gram staining, acid-fast staining, endospore staining, flagella staining, and capsule staining. This link to the OpenStax Microbiology text provides more detail on these differential staining techniques. (OpenStax CNX, 2018) The Gram stain is a differential staining procedure that involves multiple steps. It was developed by Danish microbiologist Hans Christian Gram in 1884 as an effective method to distinguish between bacteria containing the two most common types of cell walls. (OpenStax CNX, 2018) One type consists of an inner plasma membrane and a thick outer layer of peptidoglycan. The other type consists of a double phospholipid Figure 1 Simplified structures of Gram negative cells (left) and Gram positive bilayer with a thin layer of cells (right) peptidoglycan between the two. The Gram Staining technique remains one of the most frequently used staining techniques. The steps of the Gram stain procedure are listed below and illustrated in Figure. (OpenStax CNX, 2018) 1. -
Cefalexin in the WHO Essential Medicines List for Children Reject
Reviewer No. 1: checklist for application of: Cefalexin In the WHO Essential Medicines List for Children (1) Have all important studies that you are aware of been included? Yes No 9 (2) Is there adequate evidence of efficacy for the proposed use? Yes 9 No (3) Is there evidence of efficacy in diverse settings and/or populations? Yes 9 No (4) Are there adverse effects of concern? Yes 9 No (5) Are there special requirements or training needed for safe/effective use? Yes No 9 (6) Is this product needed to meet the majority health needs of the population? Yes No 9 (7) Is the proposed dosage form registered by a stringent regulatory authority? Yes 9 No (8) What action do you propose for the Committee to take? Reject the application for inclusion of the following presentations of cefalexin: • Tablets/ capsules 250mg • Oral suspensions 125mg/5ml and 125mg/ml (9) Additional comment, if any. In order to identify any additional literature, the following broad and sensitive search was conducted using the PubMed Clinical Query application: (cephalexin OR cefalexin AND - 1 - pediatr*) AND ((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]) Only one small additional study was identified, which looked at the provision of prophylactic antibiotics in patients presenting to an urban children's hospital with trauma to the distal fingertip, requiring repair.1 In a prospective randomised control trial, 146 patients were enrolled, of which 69 were randomised to the no-antibiotic group, and 66 were randomised to the antibiotic (cefalexin) group. -
The Antibacterial Activity of Cefpodoxime and the Novel Β
Session-198 b SATURDAY-279 The Antibacterial Activity of Cefpodoxime and the Novel -lactamase Inhibitor ETX1317 Against Recent Clinical Isolates of b-lactamase-producing Enterobacteriaceae Entasis Therapeutics S. McLeod1, M. Hackel2, R. Badal2, A. Shapiro1, J. Mueller1, R. Tommasi1, and A. Miller1 1-781-810-0120 1Entasis Therapeutics, Waltham, MA and 2IHMA, International Health Management Associates, Schaumburg, IL USA www.entasistx.com Abstract In vitro activity of ETX1317 vs. comparator BLIs Cumulative activity vs. 911 ESBL-enriched Enterobacteriaceae from 2013-2015 Activity vs. 35 sequenced KPC+ and/or MBL+ Enterobacteriaceae MIC (mg/L) Background β-lactamase inhibition (IC50, µM) Strain ID Species encoded bla genes IPM CAZ-AVI CPD-ETX1317 ETX1317 ETX1317 is a novel, diazabicyclooctenone inhibitor of serine β-lactamases that Number (cumulative %) of isolates inhibited at MIC (mg/L) Class A Class C Class D Drug %S* ARC3528*¥ E. cloacae AmpC [∆308-313(SKVALA)] 0.25 32 0.125 4 restores β-lactam activity against multidrug-resistant Enterobacteriaceae. ETX0282, < 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 > 32 ARC4165*¥ C. freundii CMY-2; AmpC [N366Y]; TEM-1; SHV-5 2 32 ≤0.03 4 the oral prodrug of ETX1317, is currently under investigation in combination with BLI CTX-M-15 SHV-5 KPC-2 TEM-1 AmpC* P99 OXA-24/40 OXA-48 0 5 6 14 19 34 20 27 17 18 18 733 3 CPD 10.8 ARC6479* K. oxytoca NDM-1 16 >32 32 32 cefpodoxime proxetil (CPDP), which is hydrolyzed in vivo to release cefpodoxime 0% 0.5% 1% 3% 5% 9% 11% 14% 16% 18% 20% 100% (CPD). -
Antimicrobial Surgical Prophylaxis
Antimicrobial Surgical Prophylaxis The antimicrobial surgical prophylaxis protocol establishes evidence-based standards for surgical prophylaxis at The Nebraska Medical Center. The protocol was adapted from the recently published consensus guidelines from the American Society of Health-System Pharmacists (ASHP), Society for Healthcare Epidemiology of America (SHEA), Infectious Disease Society of America (IDSA), and the Surgical Infection Society (SIS) and customized to Nebraska Medicine with the input of the Antimicrobial Stewardship Program in concert with the various surgical groups at the institution. The protocol established here-in will be implemented via standard order sets utilized within One Chart. Routine surgical prophylaxis and current and future surgical order sets are expected to conform to this guidance. Antimicrobial Surgical Prophylaxis Initiation Optimal timing: Within 60 minutes before surgical incision o Exceptions: Fluoroquinolones and vancomycin (within 120 minutes before surgical incision) Successful prophylaxis necessitates that the antimicrobial agent achieve serum and tissue concentrations above the MIC for probable organisms associated with the specific procedure type at the time of incision as well as for the duration of the procedure. Renal Dose Adjustment Guidance The following table can be utilized to determine if adjustments are needed to antimicrobial surgical prophylaxis for both pre-op and post-op dosing. Table 1 Renal Dosage Adjustment Dosing Regimen with Dosing Regimen with CrCl Dosing Regimen with -
Methicillin-Resistant Staphylococcus Aureus Infections in County Jails
Prevention, Treatment, and Containment of Methicillin-Resistant Staphylococcus aureus Infections in County Jails Texas Department of State Health Services and Correctional Facilities Workgroup September 2006 2 Clinical guidelines are being made available to the public for informational purposes only. Texas Department of State Health Services (DSHS) does not warrant these guidelines for any other purpose and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. 3 We acknowledge the Federal Bureau of Prisons Clinical Practice Guidelines for the Management Of Methicillin-Resistant Staphylococcus Aureus (MRSA) Infections, August 2005 for general organization and content of this document. 4 Table of Contents Introduction ......................................................................................................................... 6 Colonization ......................................................................................................................... 6 Transmission........................................................................................................................ 7 Screening and Surveillance ................................................................................................ 7 Diagnosis .............................................................................................................................. 8 -
In Vitro Susceptibilities of Escherichia Coli and Klebsiella Spp. To
Jpn. J. Infect. Dis., 60, 227-229, 2007 Short Communication In Vitro Susceptibilities of Escherichia coli and Klebsiella Spp. to Ampicillin-Sulbactam and Amoxicillin-Clavulanic Acid Birgul Kacmaz* and Nedim Sultan1 Department of Central Microbiology and 1Department of Microbiology, Faculty of Medicine, Gazi University, Ankara, Turkey (Received January 30, 2007. Accepted April 13, 2007) SUMMARY: Ampicillin-sulbactam (A/S) and amoxicillin-clavulanic acid (AUG) are thought to be equally efficacious clinically against the Enterobacteriaceae family. In this study, the in vitro activities of the A/S and AUG were evaluated and compared against Escherichia coli and Klebsiella spp. Antimicrobial susceptibility tests were performed by standard agar dilution and disc diffusion techniques according to the Clinical and Laboratory Standards Institute (CLSI). During the study period, 973 strains were isolated. Of the 973 bacteria isolated, 823 were E. coli and 150 Klebsiella spp. More organisms were found to be susceptible to AUG than A/S, regardless of the susceptibility testing methodology. The agar dilution results of the isolates that were found to be sensitive or resistant were also compatible with the disc diffusion results. However, some differences were seen in the agar dilution results of some isolates that were found to be intermediately resistant with disc diffusion. In E. coli isolates, 17 of the 76 AUG intermediately resistant isolates (by disc diffusion), and 17 of the 63 A/S intermediately resistant isolates (by disc diffusion) showed different resistant patterns by agar dilution. When the CLSI breakpoint criteria are applied it should be considered that AUG and A/S sensitivity in E. coli and Klebsiella spp. -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific. -
Module 6: Principles of Asepsis
Module 6: Medical and Surgical Asepsis Module 6: Medical and Surgical Asepsis Minimum Number of Theory Hours: 2 Suggested Theory Hours: 5 Recommended Clinical Hours: 8 Statement of Purpose: The purpose of this unit is to present information about asepsis and the control of infection. Procedures and precautions to protect patient/patients/residents, health care workers and others from infection are presented, including standard precautions, transmission- based precautions and biohazardous waste management. Terminology 1. Acquired Immunodeficiency 21. Escherichia coli (E. coli) 40. Non-intact Syndrome (AIDS) 22. Excretions 41. Nosocomial 2. Airborne precautions 23. Exposure incident 42. Occupational Safety and Health 3. Asepsis 24. Flora Administration (OSHA) 4. Athlete’s foot 25. Fungus 43. Pathogens 5. Bacteria 26. Health Care-Associated Infection 44. Personal Protective Equipment 6. Barriers (HAI) (PPE) 7. Biohazard symbol 27. Hepatitis A, B, C, D, E 45. Pneumonia 8. Bloodborne 28. Herpes zoster 46. Precautions 9. Carrier spore 29. Host 47. Protozoa 10. Centers for Disease Control (CDC) 30. Immunity 48. Reservoir 11. Chain of infection 31. Infection 49. Reverse isolation 12. Communicable 32. Infectious agent 50. Rickettsia 13. Contact precautions 33. Influenza 51. Scabies 14. Contagious microbes 34. Isolation 52. Sepsis 15. Contamination 35. Lice 53. Standard precautions 16. Disinfection 36. Material Safety Data Sheet (MSDS) 54. Sterilization 17. Disorientation 37. Methicillin-Resistant 55. Streptococcus 18. Disposable Staphylococcus -
Dead Bugs Don't Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance
PERSPECTIVES Dead Bugs Don’t Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance Charles W. Stratton*1 The global emergence of antibacterial resistance among and macrolides (the antibacterial agents used most frequently common and atypical respiratory pathogens in the last decade for pneumococcal infections) have become prevalent through- necessitates the strategic application of antibacterial agents. out the world. Indeed, rates of S. pneumoniae resistance to The use of bactericidal rather than bacteriostatic agents as penicillin now exceed 40% in many regions, and a high pro- first-line therapy is recommended because the eradication of portion of these strains are also resistant to macrolides. More- microorganisms serves to curtail, although not avoid, the devel- over, the trend is growing rapidly. Whereas 10.4% of all S. opment of bacterial resistance. Bactericidal activity is achieved with specific classes of antimicrobial agents as well as by com- pneumoniae isolates were resistant to penicillin and 16.5% bination therapy. Newer classes of antibacterial agents, such resistant to macrolides in 1996, these proportions rose to as the fluoroquinolones and certain members of the macrolide/ 14.1% and 21.9%, respectively, in 1997 (9). A more recent lincosamine/streptogramin class have increased bactericidal susceptibility study conducted in 2000–2001 showed that activity compared with traditional agents. More recently, the 51.5% of all S. pneumoniae isolates were resistant to penicillin ketolides (novel, semisynthetic, erythromycin-A derivatives) and 30.0% to macrolides (10). have demonstrated potent bactericidal activity against key res- The urgent need to curtail proliferation of antibacterial- piratory pathogens, including Streptococcus pneumoniae, Hae- resistant bacteria has refocused attention on the proper use of mophilus influenzae, Chlamydia pneumoniae, and Moraxella antibacterial agents.