United States Patent 19 11 Patent Number: 6,167,253 Farris Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11 Patent Number: 6,167,253 Farris Et Al USOO6167253A United States Patent 19 11 Patent Number: 6,167,253 Farris et al. (45) Date of Patent: *Dec. 26, 2000 54 MOBILE DATA/MESSAGE/ELECTRONIC OTHER PUBLICATIONS MAIL DOWNLOAD SYSTEM UTILIZING NETWORK-CENTRIC PROTOCOL SUCH AS “Wireless Web browsing: How long will deployment take?”, JAVA by Arielle Emmett (Dec. 15, 1996), Wireless Web Browsing, pp. 1-5. (75) Inventors: Robert D. Farris, Sterling, Va.; “Tomorrow’s Internet is Here Today”, Smith B., Computer, Stephen J. Flaherty, Upper Marlboro, Apr. 1997, pp. 22 and 23. Md., William D. Goodman, “Communications”, Bell & Riezenman, IEEE Spectrum, Collegeville, Pa. Jan. 1997, pp. 27–37. “Java and Beyond: Executable Content, K. Srinivas et al. 73) ASSignee : Bell Atlanticants Networketwork Services,S IncInc., Computer, Jun. 1997, pp. 49-52. s s s “Café: The right place for Java”, D. Krishna, Computer, Jul. Notice: This patent is subject to a terminal dis- 1996, pp. 104–108. claimer. “Java, the Web, and Software Development”, E. Yourdon, Computer, Aug. 1996, pp. 25-30. 21 Appl. No.: 08/998,020 “The Case for Java as a Programming Language”, A. Van 22 Filed: Dec. 24, 1997 Hoff, IEEE Internet Computing, Jan./Feb. 1997, pp. 51-56. 9 “Software Engineering”, Comerford, IEEE Spectrum, Jan. Related U.S. Application Data 1997, pp. 65-69. 63 Continuation-in-part of application No. 08/923,122, Sep. 4, (List continued on next page.) 1997, which is a continuation-in-part of application No. continuation08/725,385, Oct.of application 3, 1996, Pat.No. No.08/371,902, 5,694,455, Jan. which 12, 1995, is a Primary Examinerwar. WilliamW11 G. Trost Pat. No. 5594.779. Assistant Examiner Joy Redmon 7 2- - - 2 Attorney, Agent, or Firm McDermott, Will & Emery Int. Cl." .................................................... H04M 11/10 U.S. Cl. ........................... 455/412; 455/413; 455/414 (57 ABSTRACT i Field of Search ..................................... 455/413, 412, In an information distribution System having mobile uSerS, 455/414, 418, 419, 466, 557, 4.1, 4.2, 6.3; a method of distributing communication channels to mobile 370/328,352; 709/246, 227, 228, 230, users includes transmitting information signals including at 236 least one of Web related information and Internet related information received via one ore more of the Internet, 56) References Cited ADSL, another mobile, a land-based user, and the at least U.S. PATENT DOCUMENTS one information Service provider. The method also includes receiving the information Signals from one or more of the 4,124,773 11/1978 Elkins Internet, ADSL, another mobile, a land-based user, and the 4,481,382 11/1984 Villa-Real. information service provider in the receiver of the mobile 3. 3. SR l al i terminal, and Storing the information signals in its entirety in 4.750.19s 6f1988 R C a the mobile terminal prior to broadcasting and/or displaying 2 : - -2 rper . same to the mobile user. The method also formats, broad (List continued on next page.) casts and/or displays the information Signals after being FOREIGN PATENT DOCUMENTS stored in the mobile terminal. 2216319 10/1989 United Kingdom. 47 Claims, 37 Drawing Sheets 18 Peggy's AE STANDARD CEUARNETWORK O TANDEM MOBILE CEULAR SWCHNG SWITCHING ANTENNA APO) OFFICE OFFICE SIG USERTERMINAL PROGRAMMING APPLICATIONGATEWAY 6 SERVERO SPEECH RECOGNITION SYNTHESED AUDIORESPONSE (SRISAR) UNITs 24 TANDEM MOBILE ELLAR SWITCHING SWITCHANG ANTENNA OFFICE OFFICE SIGHT 6,167.253 Page 2 U.S. PATENT DOCUMENTS 5,329,578 7/1994 Brennan et al.. 5,353.287 10/1994 Kuddes et al.. 4,754,495 6/1988 Kawano et al.. 5,353,331 10/1994 Emery et al.. 4,799.253 1/1989 Stern et al.. 5,353.352 10/1994 Dent et al.. 4,812,843 3/1989 Champion, III et al. 5,369,681 11/1994 Boudreau et al.. 4,849,811 7/1989 Kleinerman. 5,371,898 12/1994 Grube et al.. 4,893,327 1/1990 Stern et al.. 5,418,784 5/1995 Ramakrishnan et al. 4,905,301 2/1990 Krolopp et al. 5,436,960 7/1995 Campana, Jr. et al. ................ 455/412 4,922,518 5/1990 Gordon et al.. 5,440,336 8/1995 Buhiro et al. ... ... 348/13 4,932,046 6/1990 Katz et al.. 5,444,768 8/1995 Lemaire et al. .......................... 379/68 4,954,958 9/1990 Savage et al.. 5,457,732 10/1995 Goldberg. 4,972,455 11/1990 Phillips et al.. 5,487,101 1/1996 Fletcher .................................. 455/435 5,008.925 4/1991 Pireh. 5,506,887 4/1996 Emery et al.. 5,010,399 4/1991 Goodman. 5,559,860 9/1996 Mizikovsky. 5,020,091 5/1991 Krolopp et al.. 5,594,779 1/1997 Goodman ................................ 455/413 5,020,092 5/1991 Phillips et al.. 5,692,032 11/1997 Seppanen et al. 455/466 5,020,093 5/1991 Pireh. 5,694,455 12/1997 Goodman ... 455/413 5,105,197 4/1992 Claggett. 5,727,159 3/1998 Kikinis ..... 709/246 5,111,534 5/1992 Benner. 5,745,551 4/1998 Strauch et al. 455/412 5,119,397 6/1992 Dahlin et al.. 5,802,299 11/1998 Logan et al..... ... 709/218 5,119,502 6/1992 Kallin et al.. 5,841,979 11/1998 Shulhof et al. ......................... 709/237 5,121,126 6/1992 Clagett ........... ... 342/419 5,131,020 7/1992 Liebesny et al. ....................... 455/413 OTHER PUBLICATIONS 5,148,471 9/1992 Metroka et al.. 5,177,780 1/1993 Kasper et al. “Java and the Shift to Net-Centric Computing, M. Hamil 5,206,641 4/1993 Grant et al. ............................. 340/905 ton, Computer, Aug. 1996, pp. 31-39. 5,222,1205,218,629 6/1993 McLeodDumond, et Jr. al.. et al.. 66 Enterprise Computing: The Java Factor”,ss P. Ram et al., 5.243,640 9/1993 Hadley et al.. Computer, Jun. 1997, pp. 83-87. 5,247,347 9/1993 Litteral et al. .............................. 348/7 “Java- and CORBA-Based Network Management”, M. 5,247,698 9/1993 Sawyer et al.. Leppinen et al., Computer, Jun. 1997, pp. 83-87. 5,257,4005,251.249 10/1993 AllenYoshida. et al.. 66 th. Feel of Java”,ss J. Gosling, Computer, Jun. 1997, pp. 5,307.400 4/1994 Sawyer et al.. 5,313,515 5/1994 Allen et al.. “If Java Is the Answer, What Was the Question'?', T. Lewis, 5,319,641 6/1994 Fridrich et al.. Computer, Mar. 1997, pp. 136, 133–135. U.S. Patent Dec. 26, 2000 Sheet 1 of 37 6,167.253 U.S. Patent Dec. 26, 2000 Sheet 2 of 37 6,167.253 R) BROADCASTINGAPAGINGSIGNAL IN A CONTROL CHANNEL SUCH AS THE FORWARD CONTROL CHANNEL (FOCC) R4 MOBILEREQUESTED TO RESPONDIFIT RECEIVES THE PAGE R6 THE PAGEMESSAGE MUST BE TRANSMITTED TO ALL OF THE CELL SITES COWERING THE ENTRE SERVICE AREA OF THE SYSTEM TO LOCATE MOBILE h WHEN THE MOBILE BROADCASISIS PAGE RESPONSESIGNAL TO THE PAGESIGNAL IT IS THEN LOCATED RO IDENTIFY THE SPECIFICCELL CONTAINING THAT MOBILE R2 MOBILE PLACED ONA VOICE CHANNEL BY THE BASE STATION "I CALL INTENDED FOR THE MOBILE CAN BE CONNECTED TOT THROUGH THAT VOICE CHANNEL 'n' WHEN A PAGE REMAINS UNANSWERED BY THE MOBILE STATION.WHICH IS SOUGHT, THE PAGE MUST BE REPEATED R8 IFTHE MOBILESTATION DOES NOT ANSWER THE PAGE REQUEST, SERVICE AREA EXPANDED TOINCLUDE ALL OF THE LA's WITHIN THE EXCHANGE OR GLOBALPAGING FIG 1A U.S. Patent Dec. 26, 2000 Sheet 3 of 37 6,167.253 R20 "AUTONOMOUS REGISTRATION'S CONTROLLED BY THE CELLULAR SYSTEM THROUGHOVERHEADMESSAGE TRAIN (OMI), WHICH ISTRANSMITTED ON PAGING CHANNELS R2) OMTINCLUDES ASYSTEMPARAMETER OVERHEADMESSAGE INCLUDING STATION AND REGISTRATION RELATED MESSAGES REGISTRATION MAYBE ENABLED OR DISABLED R24 INDIVIDUALLY FOREACHCLASS OF MOBILEPHONE, e.g., HOME OR ROAM, BY MEANS OF CONTROL BITS IN THE SYSTEMPARAMETER OVERHEAD MESSAGE R26 SYSTEMPARAMETER OVERHEADMESSAGE CONTAINS IDENTIFICATION NUMBER OF SERVING CELLULAR SYSTEM FORMOBILE PHONE TO DETERMINE"HOME"OR"ROAM"MODE F.G. 1B U.S. Patent 6,167.253 U.S. Patent 6,167.253 U.S. Patent Dec. 26, 2000 Sheet 6 of 37 6,167.253 (9 U.S. Patent Dec. 26, 2000 Sheet 7 of 37 6,167.253 8 00MII)WHM04 { ! |\)] U.S. Patent 6,167.253 ?ST U.S. Patent Dec. 26, 2000 Sheet 11 of 37 6,167.253 206 202 CELLULAR SYSTEM CONTROLLER EQUIPMENT 204 MANCELLPAGE MONITOR FIG 9 U.S. Patent Dec. 26, 2000 Sheet 12 of 37 6,167.253 (8 ug: XI XI þ{(WNBINYZN’“ 99 08( HOW}\BINIWIW0 10\IN00WHISMS 300NNTM 6,167.253 WHISMS 887 2 977 O O. U.S. Patent Dec. 26, 2000 Sheet 14 of 37 6,167.253 MOBILE ACCESS ATTEMPTPROCESS S4 S) MOBILE REGISTRATION REGISTRATION PROCESS MESSAGE (FIG.5) S20 S8 MOBILE ORIGINATION ORIGINATION PROCESS MESSAGE (FIG. 6) S54 S5) MOBILE PAGE PAGE RESPONSE RESPONSE PROCESS MESSAGE (FIG.7) FIG 11 U.S. Patent Dec. 26, 2000 Sheet 15 of 37 6,167.253 S6 START MOBILE REGISTRATION PROCESS S8 SO IS MOBILE Y RESET DE-REGISTRATION EXIT ALREADY REGISTERE COUNTER N SI) INCREMENT REGISTRATION MESSAGE ATTEMPT COUNTER S4 S6 EE Y REGISTERMOBILE, RESETDE-REGISTRATION EXIT F.G. 12 U.S. Patent Dec. 26, 2000 Sheet 16 Of 37 6,167.253 975 þIS U.S. Patent Dec. 26, 2000 Sheet 17 of 37 6,167.253 S56 START PAGE RESPONSE MESSAGE PROCESS S58 S60 S62 IS PAGE RETRIEVE LIST SEND DIRECTED RESPONSE RESULT OF A BROADCAST PAGE FROM OFFREQUENCIES RETRY TO MAIN "SHED"MOBILE "SHED"MOBILE CELL SYSTEM2 DIRECT MOBILE TO OFFLOAD SYSTEM VOICE CIRCUIT AND CONNECT TOINCOMING TRUNKCIRCUIT (CALL DELIVERY) F.G.
Recommended publications
  • The Evolution of U.S. Spectrum Values Over Time
    The Evolution of U.S. Spectrum Values Over Time Michelle Connolly, Department of Economics, Duke University Nelson Sa, Department of Economics, Brandeis University Azeem Zaman, Department of Statistics, Harvard University Chris Roark, Department of Economics, University of Chicago Akshaya Trivedi, Trinity College, Duke University, Class of 2018 Working Paper Series 2018 | 121 Evolution of spectrum values 1 The Evolution of U.S. Spectrum Values Over Time Michelle Connolly1, Nelson Sá2, Azeem Zaman3, Chris Roark4, and Akshaya Trivedi5 February 13, 2018 Abstract We consider 1997 to 2015 data from FCC spectrum auctions related to cellular services to attempt to identify intrinsic spectrum values. Relative to previous literature, we control for license specific auction rules, and introduce measures to separate out technological progress that effectively reduces spectrum scarcity from progress that increases demand. Results confirm that technological changes have led to increases in the relative value of higher frequencies. Surprisingly, 47 percent of these licenses have been won by “small” bidders, representing 27 percent of the real value of these licenses. The use of bidding credits further appears to consistently reduce auction competition. Keywords: Spectrum, Spectrum Scarcity, Auctions, FCC, Auction Rules, Mobile Applications, Spectral Efficiency, Broadband Speeds, Closed Auctions, Small Bidders, “The Google Effect” JEL Codes: L5, O3, K2 1 Corresponding author: Michelle Connolly, [email protected], 213 Social Sciences, Box 90097, Department of Economics, Duke University, Durham, NC 27708. 2 Department of Economics, Brandeis University. 3 Department of Statistics, Harvard University. 4 Department of Economics, University of Chicago. 5 Trinity College, Duke University Class of 2018. We gratefully acknowledge the support of NSF grant 1314468.
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • 18-452/18-750 Wireless Networks and Applications Overview Cellular
    Overview 18-452/18-750 Surveys Wireless Networks and Applications Cellular principles Lecture 17: » Cellular design Cellular - Principles » Elements of a cellular network » How does a mobile phone take place? Peter Steenkiste » Handoff » Frequency Allocation, Traffic Engineering Early cellular generations: 1G, 2G, 3G Spring Semester 2017 Today’s cellular: LTE http://www.cs.cmu.edu/~prs/wirelessS17/ Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc. Peter A. Steenkiste, CMU 1 Peter A. Steenkiste, CMU 2 The Advent of Cellular versus WiFi Cellular Networks Cellular WiFi Mobile radio telephone system was based on: Licensed Unlicensed » Predecessor of today’s cellular systems Spectrum » High power transmitter/receivers Provisioned Unprovisioned » Could support about 25 channels Service model » in a radius of 80 Km “for pay” “free” – no SLA To increase network capacity: » Multiple lower power transmitters (100W or less) MAC services Fixed bandwidth Best effort » Smaller transmission radius -> area split in cells SLAs no SLAs » Each cell with its own frequencies and base station » Adjacent cells use different frequencies Implications for level of service (SLAs), cost, » The same frequency can be reused at sufficient distance nature of protocols, …? These trends are continuing … Peter A. Steenkiste, CMU 3 Peter A. Steenkiste, CMU 4 Page 1 The Cellular Idea The MTS network http://www.privateline.com/PCS/images/SaintLouis2.gif In December 1947 Donald H. Ring outlined the idea in a Bell labs memo Split an area into cells, each with their own low power towers Each cell would use its own frequency Did not take off due to “extreme-at-the-time” processing needs » Handoff for thousands of users » Rapid switching infeasible – maintain call while changing frequency » Technology not ready Peter A.
    [Show full text]
  • Federal Communications Commission FCC 00-361 Before The
    Federal Communications Commission FCC 00-361 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Automatic and Manual Roaming Obligations ) Pertaining to ) WT Docket No. 00-193 Commercial Mobile Radio Services ) ) ) ) ) NOTICE OF PROPOSED RULEMAKING Adopted: October 4, 2000 Released: November 1, 2000 Comment Date: January 5, 2001 Reply Date: February 5, 2001 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION 1 II. BACKGROUND 2 A. Roaming 2 B. Current Requirements 5 C. Current State of Marketplace 8 III. NOTICE OF PROPOSED RULEMAKING 14 A. Automatic Roaming 17 B. Manual Roaming 30 C. Sunset of Roaming Rule(s) 32 IV. PROCEDURAL MATTERS 33 A. Regulatory Flexibility Act 33 B. Ex Parte Rules 34 C. Filing Procedures 35 D. Further Information 40 V. ORDERING CLAUSES 41 Appendix – Initial Regulatory Flexibility Analysis Federal Communications Commission FCC 00-361 I. INTRODUCTION 1. In this notice of proposed rulemaking (NPRM), we initiate a new proceeding to consider whether the Commission should adopt an “automatic” roaming rule that would apply to Commercial Mobile Radio Service (CMRS) systems and whether we should sunset the “manual” roaming requirement that currently applies to those systems.1 We recently terminated our previous consideration of these roaming issues under CC Docket No. 94-54, a long-standing proceeding.2 In light of the significant growth and development during the last few years of CMRS services provided by cellular, broadband Personal Communications Service (PCS), and Specialized Mobile Radio (SMR) systems, and given recent advancements in CMRS technologies, we believe that a new docket dedicated solely to roaming issues best ensures that we will have up-to-date, pertinent information as we consider whether, given the state of today’s marketplace, there is a need for a regulatory regime for roaming services.
    [Show full text]
  • 5G – Introduction & Future of Mobile Broadband
    International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.3, Issue 4, Oct 2013, 119-124 © TJPRC Pvt. Ltd., 5G – INTRODUCTION & FUTURE OF MOBILE BROADBAND COMMUNICATION REDEFINED R. GOWRI SHANKAR RAO & RAVALI SAI Vel Tech Dr. RR & Dr. SR Technical University, Department of Electronics and Communication Engineering, Avadi, Chennai, Tamil Nadu, India ABSTRACT 5G stands for 5th Generation Mobile Technology. It has changed the means to use cell phones within very high bandwidth. The 5G technology has extraordinary data capabilities and has ability to tie together unrestricted call volumes and infinite data broadcast within latest mobile operating system. The 5G technologies include all type of advanced features which makes 5G mobile technology most powerful and in huge demand in near future. The integration of 3G and 4G has brought new application and brings the choice of hosting new services. 5G technology includes camera, MP3 recording, video player, large phone memory, dialing speed, audio player and much more have been explored. The Router and switch technology used in 5G network providing high connectivity. This paper introduces the technology and explain the difference between 4G and 5G techniques such as increased maximum throughput; for example lower battery consumption, lower outage probability (better coverage), high bit rates in larger portions of the coverage area, cheaper or no traffic fees due to low infrastructure deployment costs, or higher aggregate capacity for many simultaneous users. KEYWORDS: Bandwidth, Router, Bit Rate, 5G, Operating System INTRODUCTION This 5G technology and its predecessors are going to give tough competition to laptops and normal computers whose market will be affected.
    [Show full text]
  • A Short History of Radio
    Winter 2003-2004 AA ShortShort HistoryHistory ofof RadioRadio With an Inside Focus on Mobile Radio PIONEERS OF RADIO If success has many fathers, then radio • Edwin Armstrong—this WWI Army officer, Columbia is one of the world’s greatest University engineering professor, and creator of FM radio successes. Perhaps one simple way to sort out this invented the regenerative circuit, the first amplifying re- multiple parentage is to place those who have been ceiver and reliable continuous-wave transmitter; and the given credit for “fathering” superheterodyne circuit, a means of receiving, converting radio into groups. and amplifying weak, high-frequency electromagnetic waves. His inventions are considered by many to provide the foundation for cellular The Scientists: phones. • Henirich Hertz—this Clockwise from German physicist, who died of blood poisoning at bottom-Ernst age 37, was the first to Alexanderson prove that you could (1878-1975), transmit and receive Reginald Fessin- electric waves wirelessly. den (1866-1932), Although Hertz originally Heinrich Hertz thought his work had no (1857-1894), practical use, today it is Edwin Armstrong recognized as the fundamental (1890-1954), Lee building block of radio and every DeForest (1873- frequency measurement is named 1961), and Nikola after him (the Hertz). Tesla (1856-1943). • Nikola Tesla—was a Serbian- Center color American inventor who discovered photo is Gug- the basis for most alternating-current lielmo Marconi machinery. In 1884, a year after (1874-1937). coming to the United States he sold The Businessmen: the patent rights for his system of alternating- current dynamos, transformers, and motors to George • Guglielmo Marconi—this Italian crea- Westinghouse.
    [Show full text]
  • A Review of Different Generations of Mobile Technology Amritpal Singh
    International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 4 Issue 8, August 2015 A Review of Different Generations of Mobile Technology Amritpal Singh distributed over Abstract— Wireless mobile technology has revolutionized the way people communicate with each land areas called cells each cell has its own cell site or base other the hindrance that was caused to the station the frequencies used by neighboring cells are different communicating parties due to distance has become to avoid interference. obsolete a mobile phone has become an integral part of our day to day work the present day mobile phones that II Zero Generation (0G-0.5G) we use have come a long way since the inception of mobile telephone service introduced in USA in 1940s the The work to design a portable telephone system started evolutionary process of wireless mobile technology is immediately after World War II the phase which is broadly classified into generations (0G, 2G, 3G, 4G) categorized under 0G started from 1946 when Motorola and where G stands for generation with 0G being the initial phase and 4G which is in use currently 0G refers to pre Bell systems began operating first mobile telephone system cell phone telephone technology the concept of “cell” was (MTS) this phase is also known as mobile radio telephone introduced in 1G present day mobile phones are capable system phase and pre cellular phase in this generation the of text, voice and video data transfer work is underway telephone systems were quite different from what are in use on development of 5G mobile technology it will have now the mobile telephone systems were mounted on vehicles features of World Wide Wireless Web(WWWW), like cars, trucks etc.
    [Show full text]
  • Cellular Wireless Networks Principles of Cellular Networks
    Cellular Wireless Networks • Chapter 14 CS420/520 Axel Krings Page 1 Sequence 14 Principles of Cellular Networks • Underlying technology for mobile phones, personal communication systems, wireless networking etc. • Developed for mobile radio telephone — Replace high power transmitter/receiver systems • Typical support for 25 channels over 80km — Use lower power, shorter range, more transmitters CS420/520 Axel Krings Page 2 Sequence 14 1 Cellular Network Organization • Multiple low power transmitters — 100W or less • Area divided into cells — Each with own antenna — Each with own range of frequencies — Served by base station • Transmitter, receiver, control unit — Adjacent cells on different frequencies to avoid crosstalk CS420/520 Axel Krings Page 3 Sequence 14 Shape of Cells • Square — Width d cell has four neighbors at distance d and four at distance 2 d — Better if all adjacent antennas equidistant • Simplifies choosing and switching to new antenna • Hexagon — Provides equidistant antennas — Radius defined as radius of circum-circle • Distance from center to vertex equals length of side — Distance between centers of cells radius R is 3 R — Not always precise hexagons • Topographical limitations • Local signal propagation conditions • Location of antennas CS420/520 Axel Krings Page 4 Sequence 14 2 Cellular Geometries CS420/520 Axel Krings Page 5 Sequence 14 Frequency Reuse • Power of base transceiver controlled — Allow communications within cell on given frequency — Limit escaping power to adjacent cells — Allow re-use of frequencies
    [Show full text]
  • A Softwarized Perspective of the 5G Networks
    A softwarized perspective of the 5G networks Kleber Vieira Cardoso, Cristiano Bonato Both, Lucio´ Rene Prade, Ciro J. A. Macedo, Victor Hugo L. Lopes F Abstract—The main goal of this article is to present the fundamental to clarify that this leap hides the various intermediate steps that theoretical concepts for the tutorial presented in IEEE NetSoft 2020. comprise it. In the telecommunications industry, including for The article explores the use of software in the 5G system composed of advertising reasons, a significant amount of technological devel- the Radio Access Network (RAN) and the core components, following opments and innovations accumulate before defining a generation, the standards defined by 3GPP, particularly the Release 15. The article which was no different at 5G networks. As an example, the Re- provides a brief overview of mobile cellular networks, including basic leases provided by the 3GPP (3rd Generation Partnership Project) concepts, operations, and evolution through the called ‘generations’ of mobile networks. From a software perspective, RAN is presented in the that is one of the leading organizations for standardizing wireless context of 4G and 5G networks, which includes the virtualization and mobile networks. The 4G/LTE networks (Long-Term Evolution) disaggregation concepts. A significant part of the article is dedicated to were introduced in 2008 by Release 8 [5] and, since then, have 5G networks and beyond, focusing on core, i.e., considering the Service- received several updates (represented by new Releases) until the Based Architecture (SBA), due to its relevance and totally softwarized 5G networks were officially introduced by Release 15 [6] in 2018.
    [Show full text]
  • Mobile Radio Evolution
    Advances in Networks 2015; 3(3-1): 1-6 Published online September 16, 2015 (http://www.sciencepublishinggroup.com/j/net) doi: 10.11648/j.net.s.2015030301.11 ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online) Mobile Radio Evolution M. Prasad, R. Manoharan Dept. of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India Email address: [email protected] (M. Prasad), [email protected] (D. R. Manoharan) To cite this article: M. Prasad, Dr. R. Manoharan. Mobile Radio Evolution. Advances in Networks . Special Issue: Secure Networks and Communications. Vol. 3, No. 3-1, 2015, pp. 1-6. doi: 10.11648/j.net.s.2015030301.11 Abstract: All over the world, wireless communication services have enjoyed dramatic growth over the past 25 years. Mobile communication is the booming field in the telecommunications industry. The cellular network is the most successful mobile communication system, used to transmit both voice and data. This paper provides a depth view about the technologies in mobile communication from the evolution of the mobile system. First from the evolution, second generation (2G), third generation (3G), fourth generation (4G) to fifth generation (5G) in terms of performance requirements and characteristic. Keywords: 2G, 3G, 4G, 5G, AMPS, GPRS, UMTS, HSDPA mobile radio became standard all over the country. Federal 1. Introduction Communications Commission (FCC) allocates 40 MHz of The Detroit Police Department radio bureau began spectrum in range between 30 and 500 MHz for private experimentation in 1921 with a band near 2 MHz for vehicular individuals, companies, and public agencies for mobile mobile service. On April 7, 1928 the Department started services.
    [Show full text]
  • Global Competitiveness of US Advanced-Technology Industries
    Global Competitiveness of U.S. Advanced-Technology Industries: Cellular Communications Investigation No. 332-329 t>ublication 2646 June 1993 U.S. International Trade Commission !,)' i ., t~' ortable ~Phones' Local Service Provider II ~7 e Telecommunlcatlon Switching Office Washington, DC 20436 U.S. International Trade Commission : COMMISSIONERS Don E. Newquist, Chairman Peter S. Watson, Vice Chairman David B. Rohr Anne E. Brunsdale Carol T. Crawford Janet A. Nuzum Office of Operations Robert A. Rogowsky, Director Office of Industries Vern Simpson, Director Norman McLennan Division Chief Susan Kollins Branch Chief Staff assigned: Richard Brown, Project Leader William Bien Melanie Posey Douglas Puffert Don Sussman Support Staff: Phyllis Boone, Cindy Payne, Wanda Tolson Addre~ all communications to Secretary to the Commi's.sion United States International Trade Commi~ion Washington, DC 20436 l U.S. International Trade Commission Washington, DC 20436 Global Competitivenes·s of U.S. Advanced-Technoiogy Industries: Cellular Communications l>lication 2646 June 1993 PREFACE Following receipt on June 11, 1992, of a request from the Senate Committee on Finance {appendix A), the U.S. International Trade Commission instituted the three requested investigations, Cellular Communications (investigation 332-329), Aircraft (332-332), and Computers (332-339) under section 332(g) of the Tariff Act of 1930 (19 U.S.C. 1332(g)). The purpose of these investigations is to examine the global competitiveness of the U.S. cellular communication, aircraft, and computer industries, respectively. These investigations follow three competitive assessments provided to the Finance Committee during September-October 1991. This report is the first of the current three and examines the cellular communications industry.
    [Show full text]
  • Telecommunications Infrastructure in the Arctic
    TELECOMMUNICATIONS INFRASTRUCTURE IN THE ARCTIC A CIRCUMPOLAR ASSESSMENT Telecommunications infrastructure in the Arctic: a circumpolar assessment ©Arctic Council Secretariat, 2017 This report is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of the license, visit http://creativecommons.org/licenses/y-nc/4.0 Suggested citation Arctic Council Task Force on Telecommunications Infrastructure in the Arctic, 2017, Telecommunications infrastructure in the Arctic: a circumpolar assessment. Arctic Council Task Force on Telecommunications Infrastructure in the Arctic (TFTIA). 90 pp. Authors Arctic Council Task Force on Telecommunications Infrastructure in the Arctic Published by Arctic Council Secretariat This report is available as an electronic document from the Arctic Council’s open access repository: oaarchive.arctic-council.org Cover photograph Snow mobile travel over sea ice in Uummannaq, Greenland, by GRID Arendal. See http://www.grida.no/resources/1150 for complete license information. Printing Printed in the United States by Advance Printing in Fairbanks, Alaska Printed in Norway by Lundblad AS in Tromsø, Norway ISBN This report exists in four versions. 978-82-93600-01-5 (Printed, U.S. letter-size paper) 978-82-93600-03-9 (Digital, U.S. letter-size) 978-82-93600-00-8 (Printed, A4-size paper) 978-82-93600-02-2 (Digital, A4-size) Acknowledgements Co-Chairs Bo Andersen and Niels Andersen wish to thank all those who contributed to the TFTIA by con- tributing substantially to the preparation of this report or by taking part in the meetings of the Task Force dur- ing its two years. The working environment has consist- ently been positive and constructive.
    [Show full text]