Mobile Phone Generations 0G 0G Refers to Pre-Cellphone Mobile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of U.S. Spectrum Values Over Time
The Evolution of U.S. Spectrum Values Over Time Michelle Connolly, Department of Economics, Duke University Nelson Sa, Department of Economics, Brandeis University Azeem Zaman, Department of Statistics, Harvard University Chris Roark, Department of Economics, University of Chicago Akshaya Trivedi, Trinity College, Duke University, Class of 2018 Working Paper Series 2018 | 121 Evolution of spectrum values 1 The Evolution of U.S. Spectrum Values Over Time Michelle Connolly1, Nelson Sá2, Azeem Zaman3, Chris Roark4, and Akshaya Trivedi5 February 13, 2018 Abstract We consider 1997 to 2015 data from FCC spectrum auctions related to cellular services to attempt to identify intrinsic spectrum values. Relative to previous literature, we control for license specific auction rules, and introduce measures to separate out technological progress that effectively reduces spectrum scarcity from progress that increases demand. Results confirm that technological changes have led to increases in the relative value of higher frequencies. Surprisingly, 47 percent of these licenses have been won by “small” bidders, representing 27 percent of the real value of these licenses. The use of bidding credits further appears to consistently reduce auction competition. Keywords: Spectrum, Spectrum Scarcity, Auctions, FCC, Auction Rules, Mobile Applications, Spectral Efficiency, Broadband Speeds, Closed Auctions, Small Bidders, “The Google Effect” JEL Codes: L5, O3, K2 1 Corresponding author: Michelle Connolly, [email protected], 213 Social Sciences, Box 90097, Department of Economics, Duke University, Durham, NC 27708. 2 Department of Economics, Brandeis University. 3 Department of Statistics, Harvard University. 4 Department of Economics, University of Chicago. 5 Trinity College, Duke University Class of 2018. We gratefully acknowledge the support of NSF grant 1314468. -
A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er. -
Michael Steer
Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary. -
18-452/18-750 Wireless Networks and Applications Overview Cellular
Overview 18-452/18-750 Surveys Wireless Networks and Applications Cellular principles Lecture 17: » Cellular design Cellular - Principles » Elements of a cellular network » How does a mobile phone take place? Peter Steenkiste » Handoff » Frequency Allocation, Traffic Engineering Early cellular generations: 1G, 2G, 3G Spring Semester 2017 Today’s cellular: LTE http://www.cs.cmu.edu/~prs/wirelessS17/ Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc. Peter A. Steenkiste, CMU 1 Peter A. Steenkiste, CMU 2 The Advent of Cellular versus WiFi Cellular Networks Cellular WiFi Mobile radio telephone system was based on: Licensed Unlicensed » Predecessor of today’s cellular systems Spectrum » High power transmitter/receivers Provisioned Unprovisioned » Could support about 25 channels Service model » in a radius of 80 Km “for pay” “free” – no SLA To increase network capacity: » Multiple lower power transmitters (100W or less) MAC services Fixed bandwidth Best effort » Smaller transmission radius -> area split in cells SLAs no SLAs » Each cell with its own frequencies and base station » Adjacent cells use different frequencies Implications for level of service (SLAs), cost, » The same frequency can be reused at sufficient distance nature of protocols, …? These trends are continuing … Peter A. Steenkiste, CMU 3 Peter A. Steenkiste, CMU 4 Page 1 The Cellular Idea The MTS network http://www.privateline.com/PCS/images/SaintLouis2.gif In December 1947 Donald H. Ring outlined the idea in a Bell labs memo Split an area into cells, each with their own low power towers Each cell would use its own frequency Did not take off due to “extreme-at-the-time” processing needs » Handoff for thousands of users » Rapid switching infeasible – maintain call while changing frequency » Technology not ready Peter A. -
Federal Communications Commission FCC 00-361 Before The
Federal Communications Commission FCC 00-361 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Automatic and Manual Roaming Obligations ) Pertaining to ) WT Docket No. 00-193 Commercial Mobile Radio Services ) ) ) ) ) NOTICE OF PROPOSED RULEMAKING Adopted: October 4, 2000 Released: November 1, 2000 Comment Date: January 5, 2001 Reply Date: February 5, 2001 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION 1 II. BACKGROUND 2 A. Roaming 2 B. Current Requirements 5 C. Current State of Marketplace 8 III. NOTICE OF PROPOSED RULEMAKING 14 A. Automatic Roaming 17 B. Manual Roaming 30 C. Sunset of Roaming Rule(s) 32 IV. PROCEDURAL MATTERS 33 A. Regulatory Flexibility Act 33 B. Ex Parte Rules 34 C. Filing Procedures 35 D. Further Information 40 V. ORDERING CLAUSES 41 Appendix – Initial Regulatory Flexibility Analysis Federal Communications Commission FCC 00-361 I. INTRODUCTION 1. In this notice of proposed rulemaking (NPRM), we initiate a new proceeding to consider whether the Commission should adopt an “automatic” roaming rule that would apply to Commercial Mobile Radio Service (CMRS) systems and whether we should sunset the “manual” roaming requirement that currently applies to those systems.1 We recently terminated our previous consideration of these roaming issues under CC Docket No. 94-54, a long-standing proceeding.2 In light of the significant growth and development during the last few years of CMRS services provided by cellular, broadband Personal Communications Service (PCS), and Specialized Mobile Radio (SMR) systems, and given recent advancements in CMRS technologies, we believe that a new docket dedicated solely to roaming issues best ensures that we will have up-to-date, pertinent information as we consider whether, given the state of today’s marketplace, there is a need for a regulatory regime for roaming services. -
5G – Introduction & Future of Mobile Broadband
International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.3, Issue 4, Oct 2013, 119-124 © TJPRC Pvt. Ltd., 5G – INTRODUCTION & FUTURE OF MOBILE BROADBAND COMMUNICATION REDEFINED R. GOWRI SHANKAR RAO & RAVALI SAI Vel Tech Dr. RR & Dr. SR Technical University, Department of Electronics and Communication Engineering, Avadi, Chennai, Tamil Nadu, India ABSTRACT 5G stands for 5th Generation Mobile Technology. It has changed the means to use cell phones within very high bandwidth. The 5G technology has extraordinary data capabilities and has ability to tie together unrestricted call volumes and infinite data broadcast within latest mobile operating system. The 5G technologies include all type of advanced features which makes 5G mobile technology most powerful and in huge demand in near future. The integration of 3G and 4G has brought new application and brings the choice of hosting new services. 5G technology includes camera, MP3 recording, video player, large phone memory, dialing speed, audio player and much more have been explored. The Router and switch technology used in 5G network providing high connectivity. This paper introduces the technology and explain the difference between 4G and 5G techniques such as increased maximum throughput; for example lower battery consumption, lower outage probability (better coverage), high bit rates in larger portions of the coverage area, cheaper or no traffic fees due to low infrastructure deployment costs, or higher aggregate capacity for many simultaneous users. KEYWORDS: Bandwidth, Router, Bit Rate, 5G, Operating System INTRODUCTION This 5G technology and its predecessors are going to give tough competition to laptops and normal computers whose market will be affected. -
(12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron Et Al
USOO9420475B2 (12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron et al. (45) Date of Patent: Aug. 16, 2016 (54) RADIO COMMUNICATION DEVICES AND 6,735,192 B1* 5/2004 Fried ................. HO4L 29,06027 METHODS FOR CONTROLLING ARADO 370,352 6,862.298 B1* 3/2005 Smith et al. ................... 370,516 COMMUNICATION DEVICE 7,103,063 B2 * 9/2006 Fang ........... 370/452 (71) Applicant: Intel Mobile Communications GmbH, 7.961,755 B2* 6/2011 Harel et al. ... 370/466 8,503,414 B2 * 8/2013 Ho et al. ....................... 370,338 Neubiberg (DE) 8,750,849 B1* 6/2014 Adib ....................... HO4L 47.10 (72) Inventors: Jerome Parron, Fuerth (DE); Peter 455,412.2 9,154,569 B1 * 10/2015 Dropps ................... HO4L 67/28 Kroon, Green Brook, NJ (US) 2004/0047331 A1 3/2004 Jang (73) Assignee: INTEL DEUTSCHLAND GMBH, 2004/0170186 A1* 9, 2004 Shao ................... HO4L 12,5693 Neubiberg (DE) 370,412 2005. O152280 A1* 7, 2005 Pollin ..................... HO4L 41.00 (*) Notice: Subject to any disclaimer, the term of this 370,252 patent is extended or adjusted under 35 2006, OO77994 A1 4/2006 Spindola et al. 2006/0251130 A1* 11/2006 Greer ...................... G1 OL 21/04 U.S.C. 154(b) by 0 days. 370,508 (21) Appl. No.: 13/762,408 (Continued) (22) Filed: Feb. 8, 2013 FOREIGN PATENT DOCUMENTS (65) Prior Publication Data CN 1496.157 A 5, 2004 US 2014/022656O A1 Aug. 14, 2014 OTHER PUBLICATIONS (51) Int. Cl. 3GPP TS 26.114 V12.0.0 (Dec. 2012); Technical Specification H0474/00 (2009.01) Group Services and System Aspects; IP Multimedia Subsystem H04/24/02 (2009.01) (IMS); Multimedia Telephony; Media handling and interaction H04L L/20 (2006.01) (Release 12); pp. -
A Short History of Radio
Winter 2003-2004 AA ShortShort HistoryHistory ofof RadioRadio With an Inside Focus on Mobile Radio PIONEERS OF RADIO If success has many fathers, then radio • Edwin Armstrong—this WWI Army officer, Columbia is one of the world’s greatest University engineering professor, and creator of FM radio successes. Perhaps one simple way to sort out this invented the regenerative circuit, the first amplifying re- multiple parentage is to place those who have been ceiver and reliable continuous-wave transmitter; and the given credit for “fathering” superheterodyne circuit, a means of receiving, converting radio into groups. and amplifying weak, high-frequency electromagnetic waves. His inventions are considered by many to provide the foundation for cellular The Scientists: phones. • Henirich Hertz—this Clockwise from German physicist, who died of blood poisoning at bottom-Ernst age 37, was the first to Alexanderson prove that you could (1878-1975), transmit and receive Reginald Fessin- electric waves wirelessly. den (1866-1932), Although Hertz originally Heinrich Hertz thought his work had no (1857-1894), practical use, today it is Edwin Armstrong recognized as the fundamental (1890-1954), Lee building block of radio and every DeForest (1873- frequency measurement is named 1961), and Nikola after him (the Hertz). Tesla (1856-1943). • Nikola Tesla—was a Serbian- Center color American inventor who discovered photo is Gug- the basis for most alternating-current lielmo Marconi machinery. In 1884, a year after (1874-1937). coming to the United States he sold The Businessmen: the patent rights for his system of alternating- current dynamos, transformers, and motors to George • Guglielmo Marconi—this Italian crea- Westinghouse. -
A Review of Different Generations of Mobile Technology Amritpal Singh
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 4 Issue 8, August 2015 A Review of Different Generations of Mobile Technology Amritpal Singh distributed over Abstract— Wireless mobile technology has revolutionized the way people communicate with each land areas called cells each cell has its own cell site or base other the hindrance that was caused to the station the frequencies used by neighboring cells are different communicating parties due to distance has become to avoid interference. obsolete a mobile phone has become an integral part of our day to day work the present day mobile phones that II Zero Generation (0G-0.5G) we use have come a long way since the inception of mobile telephone service introduced in USA in 1940s the The work to design a portable telephone system started evolutionary process of wireless mobile technology is immediately after World War II the phase which is broadly classified into generations (0G, 2G, 3G, 4G) categorized under 0G started from 1946 when Motorola and where G stands for generation with 0G being the initial phase and 4G which is in use currently 0G refers to pre Bell systems began operating first mobile telephone system cell phone telephone technology the concept of “cell” was (MTS) this phase is also known as mobile radio telephone introduced in 1G present day mobile phones are capable system phase and pre cellular phase in this generation the of text, voice and video data transfer work is underway telephone systems were quite different from what are in use on development of 5G mobile technology it will have now the mobile telephone systems were mounted on vehicles features of World Wide Wireless Web(WWWW), like cars, trucks etc. -
Cellular Wireless Networks Principles of Cellular Networks
Cellular Wireless Networks • Chapter 14 CS420/520 Axel Krings Page 1 Sequence 14 Principles of Cellular Networks • Underlying technology for mobile phones, personal communication systems, wireless networking etc. • Developed for mobile radio telephone — Replace high power transmitter/receiver systems • Typical support for 25 channels over 80km — Use lower power, shorter range, more transmitters CS420/520 Axel Krings Page 2 Sequence 14 1 Cellular Network Organization • Multiple low power transmitters — 100W or less • Area divided into cells — Each with own antenna — Each with own range of frequencies — Served by base station • Transmitter, receiver, control unit — Adjacent cells on different frequencies to avoid crosstalk CS420/520 Axel Krings Page 3 Sequence 14 Shape of Cells • Square — Width d cell has four neighbors at distance d and four at distance 2 d — Better if all adjacent antennas equidistant • Simplifies choosing and switching to new antenna • Hexagon — Provides equidistant antennas — Radius defined as radius of circum-circle • Distance from center to vertex equals length of side — Distance between centers of cells radius R is 3 R — Not always precise hexagons • Topographical limitations • Local signal propagation conditions • Location of antennas CS420/520 Axel Krings Page 4 Sequence 14 2 Cellular Geometries CS420/520 Axel Krings Page 5 Sequence 14 Frequency Reuse • Power of base transceiver controlled — Allow communications within cell on given frequency — Limit escaping power to adjacent cells — Allow re-use of frequencies -
A Softwarized Perspective of the 5G Networks
A softwarized perspective of the 5G networks Kleber Vieira Cardoso, Cristiano Bonato Both, Lucio´ Rene Prade, Ciro J. A. Macedo, Victor Hugo L. Lopes F Abstract—The main goal of this article is to present the fundamental to clarify that this leap hides the various intermediate steps that theoretical concepts for the tutorial presented in IEEE NetSoft 2020. comprise it. In the telecommunications industry, including for The article explores the use of software in the 5G system composed of advertising reasons, a significant amount of technological devel- the Radio Access Network (RAN) and the core components, following opments and innovations accumulate before defining a generation, the standards defined by 3GPP, particularly the Release 15. The article which was no different at 5G networks. As an example, the Re- provides a brief overview of mobile cellular networks, including basic leases provided by the 3GPP (3rd Generation Partnership Project) concepts, operations, and evolution through the called ‘generations’ of mobile networks. From a software perspective, RAN is presented in the that is one of the leading organizations for standardizing wireless context of 4G and 5G networks, which includes the virtualization and mobile networks. The 4G/LTE networks (Long-Term Evolution) disaggregation concepts. A significant part of the article is dedicated to were introduced in 2008 by Release 8 [5] and, since then, have 5G networks and beyond, focusing on core, i.e., considering the Service- received several updates (represented by new Releases) until the Based Architecture (SBA), due to its relevance and totally softwarized 5G networks were officially introduced by Release 15 [6] in 2018. -
Mobile Radio Evolution
Advances in Networks 2015; 3(3-1): 1-6 Published online September 16, 2015 (http://www.sciencepublishinggroup.com/j/net) doi: 10.11648/j.net.s.2015030301.11 ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online) Mobile Radio Evolution M. Prasad, R. Manoharan Dept. of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India Email address: [email protected] (M. Prasad), [email protected] (D. R. Manoharan) To cite this article: M. Prasad, Dr. R. Manoharan. Mobile Radio Evolution. Advances in Networks . Special Issue: Secure Networks and Communications. Vol. 3, No. 3-1, 2015, pp. 1-6. doi: 10.11648/j.net.s.2015030301.11 Abstract: All over the world, wireless communication services have enjoyed dramatic growth over the past 25 years. Mobile communication is the booming field in the telecommunications industry. The cellular network is the most successful mobile communication system, used to transmit both voice and data. This paper provides a depth view about the technologies in mobile communication from the evolution of the mobile system. First from the evolution, second generation (2G), third generation (3G), fourth generation (4G) to fifth generation (5G) in terms of performance requirements and characteristic. Keywords: 2G, 3G, 4G, 5G, AMPS, GPRS, UMTS, HSDPA mobile radio became standard all over the country. Federal 1. Introduction Communications Commission (FCC) allocates 40 MHz of The Detroit Police Department radio bureau began spectrum in range between 30 and 500 MHz for private experimentation in 1921 with a band near 2 MHz for vehicular individuals, companies, and public agencies for mobile mobile service. On April 7, 1928 the Department started services.