5G – Introduction & Future of Mobile Broadband
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications. -
Springer.Mobile.Broadband.Including
Mobile Broadband Including WiMAX and LTE Mustafa Ergen Mobile Broadband Including WiMAX and LTE ABC Mustafa Ergen Berkeley, CA USA ISBN: 978-0-387-68189-4 e-ISBN: 978-0-387-68192-4 DOI: 10.1007/978-0-387-68192-4 Library of Congress Control Number: 2008939013 c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper springer.com Preface This book attempts to provide an overview of IP-OFDMA technology, commenc- ing with cellular and IP technology for the uninitiated, while endeavoring to pave the way toward OFDMA theory and emerging technologies, such as WiMAX, LTE, and beyond. -
FCC RELEASES FIRST-OF-ITS-KIND MOBILE BROADBAND MAP Standardized 4G LTE Coverage Data Marks Progress on the FCC’S Broadband Mapping and Data Collection Efforts
Media Contact: Anne Veigle [email protected] For Immediate Release FCC RELEASES FIRST-OF-ITS-KIND MOBILE BROADBAND MAP Standardized 4G LTE Coverage Data Marks Progress on the FCC’s Broadband Mapping and Data Collection Efforts WASHINGTON, August 6, 2021— Today, the FCC published a brand-new map showing mobile coverage and availability data in the U.S. from the country’s largest wireless providers. This is the first public map showing updated mobile coverage released by the FCC and represents a significant improvement over other data previously published by the agency. It also serves as a public test of the standardized criteria developed to facilitate improved mapping under the Broadband DATA Act. “A good map is one that changes over time. Today’s new map represents progress in our efforts to implement the Broadband DATA Act and build next-generation broadband maps that can help to connect 100 percent of Americans,” said Rosenworcel. “Using improved systems and data, we can provide better information about where broadband service is and is not across the country. While much work remains, I congratulate the Broadband Data Task Force for moving full speed ahead on this essential mission.” To view the FCC’s new 4G LTE mobile broadband map, visit: https://fcc.maps.arcgis.com/apps/webappviewer/index.html?id=6c1b2e73d9d749cdb7bc88a0d1b dd25b This map provides a preview of how the mobile data the FCC will collect under the standards set by the Broadband DATA Act will look when mapped. Never before have maps been created using these new, standardized mobile data specifications, which will improve the uniformity and consistency of broadband availability data collected by the FCC. -
The Evolution of U.S. Spectrum Values Over Time
The Evolution of U.S. Spectrum Values Over Time Michelle Connolly, Department of Economics, Duke University Nelson Sa, Department of Economics, Brandeis University Azeem Zaman, Department of Statistics, Harvard University Chris Roark, Department of Economics, University of Chicago Akshaya Trivedi, Trinity College, Duke University, Class of 2018 Working Paper Series 2018 | 121 Evolution of spectrum values 1 The Evolution of U.S. Spectrum Values Over Time Michelle Connolly1, Nelson Sá2, Azeem Zaman3, Chris Roark4, and Akshaya Trivedi5 February 13, 2018 Abstract We consider 1997 to 2015 data from FCC spectrum auctions related to cellular services to attempt to identify intrinsic spectrum values. Relative to previous literature, we control for license specific auction rules, and introduce measures to separate out technological progress that effectively reduces spectrum scarcity from progress that increases demand. Results confirm that technological changes have led to increases in the relative value of higher frequencies. Surprisingly, 47 percent of these licenses have been won by “small” bidders, representing 27 percent of the real value of these licenses. The use of bidding credits further appears to consistently reduce auction competition. Keywords: Spectrum, Spectrum Scarcity, Auctions, FCC, Auction Rules, Mobile Applications, Spectral Efficiency, Broadband Speeds, Closed Auctions, Small Bidders, “The Google Effect” JEL Codes: L5, O3, K2 1 Corresponding author: Michelle Connolly, [email protected], 213 Social Sciences, Box 90097, Department of Economics, Duke University, Durham, NC 27708. 2 Department of Economics, Brandeis University. 3 Department of Statistics, Harvard University. 4 Department of Economics, University of Chicago. 5 Trinity College, Duke University Class of 2018. We gratefully acknowledge the support of NSF grant 1314468. -
4G to 5G Networks and Standard Releases
4G to 5G networks and standard releases CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives Provide an overview of various technologies and standards of 4G and future 5G 2 Agenda I. 4G and LTE networks II. LTE Release 10 to 14 III. 5G 3 Agenda I. 4G and LTE networks 4 LTE/SAE 1. 4G motivations 5 Introduction . Geneva, 18 January 2012 – Specifications for next-generation mobile technologies – IMT-Advanced – agreed at the ITU Radiocommunications Assembly in Geneva. ITU determined that "LTELTELTE----AdvancedAdvancedAdvanced" and "WirelessMANWirelessMANWirelessMAN----AdvancedAdvancedAdvanced" should be accorded the official designation of IMTIMT----AdvancedAdvanced : . Wireless MANMAN- ---AdvancedAdvancedAdvanced:::: Mobile WiMax 2, or IEEE 802. 16m; . 3GPPLTE AdvancedAdvanced: LTE Release 10, supporting both paired Frequency Division Duplex (FDD) and unpaired Time Division Duplex (TDD) spectrum. 6 Needs for IMT-Advanced systems Need for higher data rates and greater spectral efficiency Need for a Packet Switched only optimized system Use of licensed frequencies to guarantee quality of services Always-on experience (reduce control plane latency significantly and reduce round trip delay) Need for cheaper infrastructure Simplify architecture of all network elements 7 Impact and requirements on LTE characteristics Architecture (flat) Frequencies (flexibility) Bitrates (higher) Latencies (lower) Cooperation with other technologies (all 3GPP and -
A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er. -
HP Mobile Broadband Modules
QuickSpecs HP Mobile Broadband Modules Overview Introduction Wireless Wide Area Network (WWAN) is an optional feature sold separately or as an add-on feature on select HP notebooks, Ultrabooks and tablets HP Mobile Broadband modules provide integrated WWAN technology such as LTE**, DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA, GSM, GPRS, EDGE, CDMA, and GNSS connectivity over several radio frequency bands. (Select modules also supports 2G / 3G roaming). HP Mobile Broadband modules use this integrated WWAN technology to connect to wireless networks operated by mobile network operators in many countries worldwide. (Separately purchased mobile operator service required.) ** 4G LTE not available on all products or in all countries. A WWAN connection requires wireless data service contract, network operator support, and is not available in all areas. Contact a service provider (e.g. Mobile Network Operator) to determine the coverage area and availability. Connection speeds will vary due to location, environment, network conditions, and other factors. Selected HP Mobile Broadband Wireless notebooks support Wireless WAN (WWAN) as an after-market option if ordered as a Wireless WAN (WWAN) ready configuration option. This provides customers the opportunity of adding Wireless WAN (WWAN) as an after-market option providing cost-efficient solution of adding WWAN post purchase. By offering customers this WWAN ready configuration option; HP can offer customers and integrated wireless wide area network (WWAN) option by way of after-market option kit. If the -
5G Wireless Infrastructure Semiconductor Analysis
5G WIRELESS INFRASTRUCTURE SEMICONDUCTOR ANALYSIS SIA CONFIDENTIAL | 5G INFRASTRUCTURE ANALYSIS | 1 2 | 5G INFRASTRUCTURE ANALYSIS EXECUTIVE SUMMARY On behalf of SIA, a wireless market intelligence firm has analyzed all of the semiconductor function product families within the key elements of a 5G radio access network (RAN)- baseband unit (BBU) and active antenna unit (AAU)/remote radio unit (RRU) systems for 5G base stations along with the current domestic United States and foreign/international semiconductor suppliers. Our conclusion is that despite the United States maintaining overall market-share leadership in semiconductors with a 45% share of the global market, substitutes for U.S. components exist for nearly every semiconductor product family required to build a complete RAN infrastructure. In fact, our analysis indicates that of the more than fifty critical semiconductor elements necessary to design, manufacture, and sell a competitive 5G RAN network1, only 3 components could face supply constraints outside the United States in the event of an export restriction. For each of those three components, we have further concluded that alternatives are currently being deployed or under active development, especially within China by Huawei’s semiconductor design arm, HiSilicon. 8 | 5G INFRASTRUCTURE ANALYSIS | SIA CONFIDENTIAL OUR CONCLUSION FOR THE BASEBAND UNIT SYSTEM FOR A 5G BASE STATION IS THAT THE TWO KEY SEMICONDUCTOR PRODUCT FAMILIES THAT MAY PRESENT SUPPLY ISSUES OUTSIDE OF THE UNITED STATES ARE: • Commercial off-the-shelf Field -
18-452/18-750 Wireless Networks and Applications Overview Cellular
Overview 18-452/18-750 Surveys Wireless Networks and Applications Cellular principles Lecture 17: » Cellular design Cellular - Principles » Elements of a cellular network » How does a mobile phone take place? Peter Steenkiste » Handoff » Frequency Allocation, Traffic Engineering Early cellular generations: 1G, 2G, 3G Spring Semester 2017 Today’s cellular: LTE http://www.cs.cmu.edu/~prs/wirelessS17/ Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc. Peter A. Steenkiste, CMU 1 Peter A. Steenkiste, CMU 2 The Advent of Cellular versus WiFi Cellular Networks Cellular WiFi Mobile radio telephone system was based on: Licensed Unlicensed » Predecessor of today’s cellular systems Spectrum » High power transmitter/receivers Provisioned Unprovisioned » Could support about 25 channels Service model » in a radius of 80 Km “for pay” “free” – no SLA To increase network capacity: » Multiple lower power transmitters (100W or less) MAC services Fixed bandwidth Best effort » Smaller transmission radius -> area split in cells SLAs no SLAs » Each cell with its own frequencies and base station » Adjacent cells use different frequencies Implications for level of service (SLAs), cost, » The same frequency can be reused at sufficient distance nature of protocols, …? These trends are continuing … Peter A. Steenkiste, CMU 3 Peter A. Steenkiste, CMU 4 Page 1 The Cellular Idea The MTS network http://www.privateline.com/PCS/images/SaintLouis2.gif In December 1947 Donald H. Ring outlined the idea in a Bell labs memo Split an area into cells, each with their own low power towers Each cell would use its own frequency Did not take off due to “extreme-at-the-time” processing needs » Handoff for thousands of users » Rapid switching infeasible – maintain call while changing frequency » Technology not ready Peter A. -
What Frequency Is 5G (Verizon)
11/18/2019 What frequency is 5G? | About Verizon eless.com/) Residential (https://www.verizon.com/?lid=//global//residential) m/business/gateway/) About Verizon (/about/) Your Contact us Our Company location: (https://www.verizon.com/Support/Residential/contact- (/about/our-company) Concord, us/index.htm) NH News (/about/news) Change location 11.18.2019 Personal Tech (/about/news-story-categories/personal-tech) What frequency is 5G? (https://w(whtwtp.f:a//cwewb(howto.ttkpw.:c/i/totwemwr/.cswoh.lmainr/keserh/dsaihrnea.c?roemr.p/hshpa?reArticle? u=https://uvrzl=.thot/t3p7si:8m//DivnOzi.=toot)r/u3e7&i8uDrlO=hot&tpvsia:/=/vez.rtioz/o3n7&i8teDxOt=oW&htiatlte%=W20hfaret%qu2e0nfcreyq%u2e0nicsy%%22005iGs%%230F5% From 1G to 5G all cellular networks carry information through the electromagnetic spectrum which includes the radio spectrum https://www.verizon.com/about/our-company/5g/what-frequency-5g?fbclid=IwAR2RIHs8cmcE_pskp6pSYZuXDEVnzq_hmb12fkY_wPSNpD-Q5OUk4f… 1/5 11/18/2019 What frequency is 5G? | About Verizon From 1G to 5G, all cellular networks carry information through the electromagnetic spectrum, which includes the radio spectrum. Some frequency bands within the radio spectrum will be used for 5G, including Verizon’s 5G Ultra Wideband (UWB) network. The following information can help you learn what frequency 5G uses and how that affects the speed and efficiency of the network. What is the radio spectrum? To understand exactly how fast 5G technology is expected to be, it’s important to consider it in relation to other cellular network technologies. If you think back to high school physics, you may recall the electromagnetic spectrum. This includes all the different wavelengths/frequencies you may encounter: Gamma Rays, X-Rays, light and visible rays, microwaves, millimeter waves (mmWave), radio waves (including AM and FM radio) and more. -
Overview of Risks Introduced by 5G Adoption in the United States
CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE NOTE July 31, 2019; 1200 EDT OVERVIEW OF RISKS INTRODUCED BY 5G ADOPTION IN THE UNITED STATES KEY FINDINGS The Department of Homeland Security (DHS)/Cybersecurity and Infrastructure Security Agency (CISA) assesses that Fifth Generation Mobile Network (5G) will present opportunities and challenges, and its implementation will introduce vulnerabilities related to supply chains, deployment, network security, and the loss of competition and trusted options. Use of 5G components manufactured by untrusted companies could expose U.S. entities to risks introduced by malicious software and hardware, counterfeit components, and component flaws caused by poor manufacturing processes and maintenance procedures. 5G hardware, software, and services provided by untrusted entities could increase the risk of compromise to the confidentiality, integrity, and availability of network assets. Even if U.S. networks are secure, U.S. data that travels overseas through untrusted telecommunication networksi is potentially at risk of interception, manipulation, disruption, and destruction. 5G will use more components than previous generations of wireless networks, and the proliferation of 5G infrastructure may provide malicious actors more attack vectors. The effectiveness of 5G’s security enhancements will in part depend on proper implementation and configuration. Despite security enhancement over previous generations, it is unknown what new vulnerabilities may be discovered in 5G networks. Further, 5G builds upon previous generations of wireless networks and will initially be integrated into 4G Long-Term Evolution (LTE) networks that contain some legacy vulnerabilities. Untrusted companies may be less likely to participate in interoperability efforts. Custom 5G technologies that do not meet interoperability standards may be difficult to update, repair, and replace. -
CDMA2000 Path to LTE
CDMA2000 Path to LTE Sam Samra Senior DirectorDirector--TechnologyTechnology Programs CDMA Development Group ATIS 3GPP LTE Con ference Dallas, TX January 26, 2009 Major Industry Initiatives 2 www.cdg.org CDMA: 475 Million Global Subscribers More than 300 operators in 108 countries/territories have deployed or are deploying CDMA2000® 2 Most leading CDMA2000 operators intend to deploy LTE www.cdg.org CDMA Subscribers as of September 2008 Asia Pacific 251,010,000 North America 145,800,000 Caribbean & Latin America 52,150,000 Europe 3,280,000 Europe, Middle East, Africa Middle East 4,900,000 5.4% Africa 17,620,000 Total 474,760,000 Caribbean & Latin America 11.0% Asia Pacific 52.9% North America 30.7% 2 www.cdg.org United States: Carrier Market Share CDMA2000 is the dominant technology in the U.S. wireless services market U.S. Subscriber Market Share (Q3 2008) 9% 12% 32% 28% 19% Verizon Sprint AT&T T-Mobile Others CDMA Market Share is more than 52% 2 Source: Chetan Sharma Consulting, August 2008 www.cdg.org Global CDMA2000 3G Subscriber Forecast CDMA2000 Subscribers Worldwide Millions (Cumulative) 700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0 2001* 2002* 2003* 2004* 2005* 2006* 2007* 2008** 2009** 2010** 2011** 2012** 2013** CDMA2000 3.7 33.1 85.4 146.8 225.1 325.1 417.5 483.5 539.5 584.8 630.5 669.8 700.5 *Source: Actual CDMA Development Group 2**Source: Net growth average of Strategy Analytics (Jun 2008), ABI (Aug 2008), Wireless Intelligence (Jul 2008), WCIS+ (Jul 2008), iGR (Mar 2008) and Yankee Group (Jun 2008) for subscriber forecasts