Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions S S symmetry Review Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions Mohammed H. Alsharif 1 , Anabi Hilary Kelechi 2, Mahmoud A. Albreem 3, Shehzad Ashraf Chaudhry 4 , M. Sultan Zia 5 and Sunghwan Kim 6,* 1 Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; [email protected] 2 Department of Electrical Engineering and Information Engineering, College of Engineering, Covenant University, Canaanland, Ota P.M.B 1023, Ogun State, Nigeria; [email protected] 3 Department of Electronics and Communications Engineering, A’Sharqiyah University, Ibra 400, Oman; [email protected] 4 Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, Avcılar, 34310 Istanbul,˙ Turkey; [email protected] 5 Department of Computer Science and IT, University of Lahore, Gujrat Campus 50180, Pakistan; [email protected] 6 School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea * Correspondence: [email protected]; Tel.: +82-52-259-1401 Received: 28 March 2020; Accepted: 21 April 2020; Published: 24 April 2020 Abstract: The standardization activities of the fifth generation communications are clearly over and deployment has commenced globally. To sustain the competitive edge of wireless networks, industrial and academia synergy have begun to conceptualize the next generation of wireless communication systems (namely, sixth generation, (6G)) aimed at laying the foundation for the stratification of the communication needs of the 2030s. In support of this vision, this study highlights the most promising lines of research from the recent literature in common directions for the 6G project. Its core contribution involves exploring the critical issues and key potential features of 6G communications, including: (i) vision and key features; (ii) challenges and potential solutions; and (iii) research activities. These controversial research topics were profoundly examined in relation to the motivation of their various sub-domains to achieve a precise, concrete, and concise conclusion. Thus, this article will contribute significantly to opening new horizons for future research directions. Keywords: wireless networks; beyond 5G; 6G; 6G mobile communication; terahertz communications; holographic communications; terahertz spectrum; visible-light communications 1. Introduction Wireless communication systems are the Eureka equivalents of our time given the rapid technological innovations in the last decades and symmetry technologies for the Internet of Things. To date, five (5) generations of mobile wireless cellular communications systems exist, with the recent generation being the fifth generation (5G) wireless network. A wireless cellular communication generation emerges approximately every 10 years since 1980, including the first generation analog FM cellular systems in 1981, the second generation in 1992, the third generation (3G) in 2001, and the fourth generation (4G) (often referred to as the long-term evolution [LTE]) in 2011 [1,2]. Figure1 presents a synopsis of the evolving wireless technologies. Generally, the last decade has witnessed a tremendous development in wireless communications which led to thriving data-hungry applications, Symmetry 2020, 12, 676; doi:10.3390/sym12040676 www.mdpi.com/journal/symmetry Symmetry 2020, 12, 676 2 of 21 Symmetry 2020, 12, x FOR PEER REVIEW 2 of 21 tremendous development in wireless communications which led to thriving data-hungry includingapplications, multimedia, including online multimedia, gaming, online and high-definitiongaming, and high-definition video streaming. video streaming. The boomingThe mobile Internetbooming technology mobile isInternet the catalysttechnology enabling is the catalyst and enabling propagating and propagating various various state-of-the-art state-of-the-art user-defined services,user-defined such as mobile services, shopping such as mobile and shopping payment, and payment, smart homes smart homes/cities,/cities, and and mobile mobile gaming gaming [1,3]. [1,3]. FigureFigure 1. Major 1. Major milestones milestones for for different different generations generations of communications of communications (1–6G). (1–6G). The standardization of 5G communications has been completed, and the system is being Thedeployed standardization worldwide. ofFigure 5G communications 2 shows the 5G commercial has been network completed, world andcoverage the systemmap (5G is field being deployed worldwide.testing/5G Figure trials/5G2 shows research). the 5G South commercial Korea was networkthe foremost world nation coverage to adopt map substantial (5G field 5G testing /5G trials/5Gdeployment research). on South a large Korea scale for was approximately the foremost 85 cities nation with to 86,000 adopt 5G substantialbase stations as 5G of deployment April 2019 on a large scale for[4]. approximately However, 85% of 85 the cities 5G base with stations 86,000 were 5G baselocated stations in six cities, as of including April 2019 Seoul, [4 ].Busan, However, and 85% of the Daegu, where a 3.5 GHz (sub-6) spectrum in distributed architecture with deployed data rate speed 5G basetested stations speeds were in the located range of in 193 six to cities, 430 Mbit/s including [5]. In general, Seoul, close Busan, to 65% and of the Daegu, world’s where population a 3.5 GHz (sub-6) spectrumare in estimated distributed to gain architecture access to 5G superfast with deployed 5G Internet data coverage rate speedby the end tested of 2025 speeds [6]. in the range of 193 to 430 Mbit/s [5G5]. networks In general, will closedeliver to an 65% extensive of the world’svariety of populationservices comprising are estimated enhanced to mobile gain access to 5G superfastbroadband 5G Internet (eMBB), coverage ultra-reliable by theand endlow-latency of 2025 communications [6]. (uRLLC), and massive machine type communications (mMTC); for detailed information about the vision, requirements, and core 5Gfeatures networks of 5G will wireless deliver cellular an extensivemobile communication variety of networks, services refer comprising to [2,7–9]. enhancedHowever, wireless mobile broadband (eMBB),data ultra-reliable traffic volume and and the low-latency magnitude of connected communications things are expected (uRLLC), to leap and to hundredfold massive machineof type communicationsequipment in (mMTC); a given cubic for meter. detailed Moreover, information data-hungry about apps the such vision, as sending requirements, holographic videos and core features of 5G wirelessneeds a spectrum cellular bandwidth mobile communication that is currently unav networks,ailable in refer the mm-wave to [2,7– 9spectrum.]. However, This situation wireless data traffic presents difficult challenges on an area or a spatial spectral efficiency and the needed frequency volume and the magnitude of connected things are expected to leap to hundredfold of equipment in a givenSymmetry cubic meter. 2020, 12, x; Moreover, doi: FOR PEER data-hungry REVIEW apps such as sending holographicwww.mdpi.com/journal/symmetry videos needs a spectrum bandwidth that is currently unavailable in the mm-wave spectrum. This situation presents difficult challenges on an area or a spatial spectral efficiency and the needed frequency spectrum bands for connectivity. Hence, a broader radio frequency spectrum bandwidth has become a necessity and can only be found at the sub-terahertz (THz) and THz bands. Moreover, the recent upsurge of diversified mobile applications, especially those supported by Artificial Intelligence (AI) technology, is spurring heated discussions on the future evolution of wireless communications [10]. These challenges have motivated industry and academia to start conceptualizing the next generation of wireless communication systems (6G) aimed at providing communication services for the future demands Symmetry 2020, 12, x FOR PEER REVIEW 3 of 21 spectrum bands for connectivity. Hence, a broader radio frequency spectrum bandwidth has become a necessity and can only be found at the sub-terahertz (THz) and THz bands. Moreover, the recent Symmetry 2020, 12, x FOR PEER REVIEW 3 of 21 upsurge of diversified mobile applications, especially those supported by Artificial Intelligence (AI) technology,spectrum isbands spurring for connectivity. heated di scussionsHence, a broade on ther radio future frequency evolution spectrum of wireless bandwidth communications has become [10]. SymmetryThesea necessity challenges2020, 12 ,and 676 have can only motivated be found industry at the sub-tera and academhertz (THz)ia to startand THz conceptualizing bands. Moreover, the nextthe recent generation 3 of 21 of wirelessupsurge communicationof diversified mobile systems applications, (6G) aimed especially at providing those supported communication by Artificial services Intelligence for the(AI) future demandstechnology, of the is spurring2030s [11] heated and di scussionsmaintaining on the the future sustainability evolution of wirelessand competitiveness communications of [10]. wireless ofcommunication theThese 2030s challenges [11] andsystems. have maintaining motivated Thus, the theindustry 6G sustainability communica and academ andtionia to competitiveness startsystems conceptualizing are expected of wireless the next to provide communicationgeneration a large systems.coverageof wireless Thus,that allowscommunication the 6G subscribers communication
Recommended publications
  • NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
    VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications.
    [Show full text]
  • Energy Efficiency in Cellular Networks
    Energy Efficiency in Cellular Networks Radha Krishna Ganti Indian Institute of Technology Madras [email protected] Millions 1G 2G:100Kbps2G: ~100Kb/s 3G:~1 Mb/s 4G: ~10 Mb/s Cellular Network will connect the IOT Source:Cisco Case Study: Mobile Networks in India • India has over 400,000 cell towers today • 70%+ sites have grid outages in excess of 8 hours a day; 10% are completely off-grid • Huge dependency on diesel generator sets for power backups – India imports 3 billion liters of diesel annually to support Cell Tower, DG Set, Grid these cell sites – CO2 emission exceeds 6 million metric tons a year – Energy accounts for ~25% of network opex for telcos • As mobile services expand to remote rural areas, enormity of this problem grows 4 Power consumption breakup Core network Radio access network Mobile devices 0.1 W x 7 B = 0.7 GW 2 kW x 5M = 10 GW 10 kW x 10K = 0.1 GW *Reference: Mid-size thermal plant output 0.5 GW Source: Peng Mobicomm 2011 Base station energy consumption 1500 W 60 W Signal processing 150 W 1000 W 100 W Air conditioning Power amplifier (PA) 200 W (10-20% efficiency) Power conversion 150 W Transmit power Circuit power Efficiency of PA Spectral Efficiency: bps/Hz (Shannon) Transmit power Distance Bandwidth Cellular Standard Spectral efficiency Noise power 1G (AMPS) 0.46 Spectral density 2G (GSM) 1.3 3G (WCDMA) 2.6 4G (LTE) 4.26 Energy Efficiency: Bits per Joule 1 Km 2 Km EE versus SE for PA efficiency of 20% Current status Source: IEEE Wireless Comm.
    [Show full text]
  • 1G 2G 3G LTE 4G What's Next
    What’s Next in the Cellular Evolution & How to Leverage it for New Business As you will come to see, this goal can 2006 only be accomplished by phasing out 3G and reallocating the extra bandwidth to 4G LTE. This task can only be described 2001 as daunting and challenging from not just 2018 our security perspective, but more so from theirs. 1989 Looking for more proof? First, because of demand it is necessary to upgrade all cellular networks on a regular basis. Two 2002 billion people on the planet use cellphones, according to James Katz, professor of com- munication at Rutgers University. In fact, as of 2011 there were more cellphone sub- 1999 scribers in the United States than people, ac- LTE cording to a study, underwritten by CTIA, a trade association representing the wireless 1983 1G 2G 3G 4G communications industry in the U.S., as re- ported by Bridget Kelly, author of “What Is Courtesy of Napco StarLink the Role of the Cell Phone in Communica- tion Today?” Ride the New Wave in Cellular for New RMR Society at large is becoming more mo- bile-oriented because of convenience, busi- There’s undeniably a lot of upside system control, remote video monitoring or ness and personal lifestyles. According to for savvy installing security contractors long-distance doorbells. We as an industry market research firm Statista of New York and fire/life-safety professionals whose are on the small screen to the tune of brand City, the number of smartphone users is billable offerings keep pace with the new relevance and new recurring revenue.
    [Show full text]
  • LTE-M Deployment Guide to Basic Feature Set Requirements
    LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS JUNE 2019 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS Table of Contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 5 2.1 Overview 5 2.2 Scope 5 2.3 Definitions 6 2.4 Abbreviations 6 2.5 References 9 3 GSMA MINIMUM BAseLINE FOR LTE-M INTEROPERABILITY - PROBLEM STATEMENT 10 3.1 Problem Statement 10 3.2 Minimum Baseline for LTE-M Interoperability: Risks and Benefits 10 4 LTE-M DATA ARCHITECTURE 11 5 LTE-M DePLOYMENT BANDS 13 6 LTE-M FeATURE DePLOYMENT GUIDE 14 7 LTE-M ReLEAse 13 FeATURes 15 7.1 PSM Standalone Timers 15 7.2 eDRX Standalone 18 7.3 PSM and eDRX Combined Implementation 19 7.4 High Latency Communication 19 7.5 GTP-IDLE Timer on IPX Firewall 20 7.6 Long Periodic TAU 20 7.7 Support of category M1 20 7.7.1 Support of Half Duplex Mode in LTE-M 21 7.7.2 Extension of coverage features (CE Mode A / B) 21 7.8 SCEF 22 7.9 VoLTE 22 7.10 Connected Mode Mobility 23 7.11 SMS Support 23 7.12 Non-IP Data Delivery (NIDD) 24 7.13 Connected-Mode (Extended) DRX Support 24 7.14 Control Plane CIoT Optimisations 25 7.15 User Plane CIoT Optimisations 25 7.16 UICC Deactivation During eDRX 25 7.17 Power Class 26 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS 8 LTE-M ReLEAse 14 FeATURes 27 8.1 Positioning: E-CID and OTDOA 27 8.2 Higher data rate support 28 8.3 Improvements of VoLTE and other real-time services 29 8.4 Mobility enhancement in Connected Mode 29 8.5 Multicast transmission/Group messaging 29 8.6 Relaxed monitoring for cell reselection 30 8.7 Release Assistance Indication
    [Show full text]
  • Cisco ISR1100-4G, 1100-4GLTE and 1100-6G Routers
    Data sheet Cisco public Cisco ISR1100-4G, 1100-4GLTE and 1100-6G Routers © 2020 Cisco and/or its affiliates. All rights reserved. Page 1 of 10 Contents Primary features and benefits 4 Platform architecture and capabilities 4 Product specifications 6 System specifications 6 Cisco IOS software licensing and packaging 8 Cisco and partner services 9 Ordering information 9 Cisco environmental sustainability 10 Cisco Capital 10 For more information 10 © 2020 Cisco and/or its affiliates. All rights reserved. Page 2 of 10 Part of the Cisco® 1000 Series Integrated Services Routers (ISR), the ISR 1100-4G, ISR1100-4GLTE and ISR 1100-6G models are powered by the Viptela® operating system and combine WAN and comprehensive security in a wired high-performance platform. The ISR 1100-4G, 1100-4GLTE and 1100-6G combine an enterprise grade platform with best-in-class SD-WAN. Cisco Software-Defined WAN (SD-WAN) is a cloud-first architecture that provides unparalleled visibility across your WAN, optimal connectivity for end users, and the most comprehensive security platform to protect your network. Cisco SD-WAN provides transport independence, rich network, and security services as well as endpoint flexibility. The ISR 1100-4G, 1100-6G and 1100-4GLTE routers are delivered as platforms that sit at the perimeter of a site, such as a remote office, branch office, campus, or data center. They participate in establishing a secure virtual overlay network over a mix of any WAN transports. Figure 1. ISR 1100-4G, front and back view Figure 2. ISR 1100-6G, front view; back view same as ISR 1100-4G above Figure 3.
    [Show full text]
  • 4G to 5G Networks and Standard Releases
    4G to 5G networks and standard releases CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives Provide an overview of various technologies and standards of 4G and future 5G 2 Agenda I. 4G and LTE networks II. LTE Release 10 to 14 III. 5G 3 Agenda I. 4G and LTE networks 4 LTE/SAE 1. 4G motivations 5 Introduction . Geneva, 18 January 2012 – Specifications for next-generation mobile technologies – IMT-Advanced – agreed at the ITU Radiocommunications Assembly in Geneva. ITU determined that "LTELTELTE----AdvancedAdvancedAdvanced" and "WirelessMANWirelessMANWirelessMAN----AdvancedAdvancedAdvanced" should be accorded the official designation of IMTIMT----AdvancedAdvanced : . Wireless MANMAN- ---AdvancedAdvancedAdvanced:::: Mobile WiMax 2, or IEEE 802. 16m; . 3GPPLTE AdvancedAdvanced: LTE Release 10, supporting both paired Frequency Division Duplex (FDD) and unpaired Time Division Duplex (TDD) spectrum. 6 Needs for IMT-Advanced systems Need for higher data rates and greater spectral efficiency Need for a Packet Switched only optimized system Use of licensed frequencies to guarantee quality of services Always-on experience (reduce control plane latency significantly and reduce round trip delay) Need for cheaper infrastructure Simplify architecture of all network elements 7 Impact and requirements on LTE characteristics Architecture (flat) Frequencies (flexibility) Bitrates (higher) Latencies (lower) Cooperation with other technologies (all 3GPP and
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • Skywire Nano 4G LTE-M
    Skywire Nano 4G LTE-M NimbeLink, a global leader in embedded cellular modem technology and asset tracking solutions, has introduced the Skywire Nano NL-SWN-LTE-NRF9160 modem. This new modem offers LTE-M (CAT M1) connectivity for global applications. The modem also includes an integrated GPS/GNSS receiver. The NL-SWN-LTE-NRF9160-C is optimized for Verizon. Contact NimbeLink for versions of the NL-SWN-LTE-NRF9160 that support other global networks. Features Part Number Description • No carrier certification required • Smallest embedded modem form factor NL-SWN-LTE-NRF9160 Skywire Nano, LTE-M with • User accessible applications processor GNSS • Flexible antenna options • UART, SPI, I2C serial interfaces • Verizon soldered down SIM • Support for external SIM sockets • Supports Power Save Mode and eDRX About The Skywire Family • RoHS compliant Skywire cellular modems are designed to make cellular integration fast and easy. Advantages Exceptionally small, lowest power, and end- device certified, Skywire modems enable • Global LTE coverage LTE-M (CAT M1) developers to quickly and reliably connect • Simple Firmware over-the-air update system IoT products to cellular networks around • Easy GSMA back-off solution the world. Skywire modems are backed • AT command interface for UDP and TCP/IP socket dials by industry leading documentation and • GNSS support expert-level product support. NimbeLink.com/Skywire-Cellular-Modem/ 1002227 Rev G Technical Specifications (NL-SWN-LTE-NRF9160) Target Region Global Compatible Carriers Verizon Only Cellular Technology
    [Show full text]
  • Skywire​®​ Development Kit SMS Example
    ® Skywire ​ Development Kit SMS ​ Example NimbeLink Corp Updated: August 2019 PN 30049 rev 14 NimbeLink Corp. All Rights Reserved. 1 Table of Contents Table of Contents 2 1. Introduction 3 1.1 Orderable Part Numbers 3 1.2 Prerequisites 4 2. SMS Message 5 2.1 Send SMS Message 5 2.2 Receive SMS Messages 5 2.3 Delete Received SMS Messages 6 3. Troubleshooting 7 PN 30049 rev 14 NimbeLink Corp. All Rights Reserved. 2 1. Introduction 1.1 Orderable Part Numbers Orderable Device Description Carrier Network Type NL-SWDK Skywire Development Kit Any Any NL-SW-1xRTT-A 2G 1xRTT Aeris CDMA NL-SW-1xRTT-S 2G 1xRTT Sprint CDMA NL-SW-1xRTT-V 2G 1xRTT Verizon CDMA Any GSM (AT&T, NL-SW-GPRS 2G GPRS GSM T-Mobile, etc.) NL-SW-EVDO-A 3G EVDO, GPS, GLONASS Aeris CDMA NL-SW-EVDO-V 3G EVDO, GPS, GLONASS Verizon CDMA Any GSM (AT&T, NL-SW-HSPA 3G HSPA+, GPS, GLONASS GSM T-Mobile, etc.) Any GSM (AT&T, NL-SW-HSPA-B 3G HSPA+, GPS, GLONASS GSM T-Mobile, etc.) NL-SW-LTE-TSVG LTE CAT 3 without Fallback, GPS, GLONASS Verizon LTE NL-SW-LTE-TSVG-B LTE CAT 3 without Fallback, GPS, GLONASS Verizon LTE Any GSM (AT&T, NL-SW-LTE-TNAG LTE CAT 3 with HSPA+ Fallback, GPS, GLONASS LTE, GSM T-Mobile, etc.) Any GSM (AT&T, NL-SW-LTE-TNAG-B LTE CAT 3 with HSPA+ Fallback, GPS, GLONASS LTE, GSM T-Mobile, etc.) LTE CAT 3 with HSPA+ Fallback, GPS, GLONASS, NL-SW-LTE-TEUG Any EU GSM LTE, GSM EU NL-SW-LTE-S7618RD LTE CAT1 Verizon LTE NL-SW-LTE-S7648 LTE CAT1 AT&T/T-Mobile LTE NL-SW-LTE-S7588-V LTE CAT4 with HSPA+ Fallback Verizon LTE NL-SW-LTE-S7588-V-B LTE CAT4 with HSPA+ Fallback Verizon LTE NL-SW-UAV-S7588 LTE CAT4 with HSPA+ Fallback Verizon LTE NL-SW-LTE-S7588-T LTE CAT4 with HSPA+ Fallback AT&T LTE, GSM NL-SW-LTE-S7588-T-C LTE CAT4 with HSPA+ Fallback AT&T LTE, GSM Any GSM (AT&T, NL-SW-LTE-WM14 CAT1 LTE, GSM GSM T-Mobile, etc.) NL-SW-LTE-SVZM20 LTE CAT M1 Verizon LTE NL-SW-LTE-TC4NAG LTE CAT4 Verizon/AT&T LTE NL-SW-LTE-TC4EU LTE CAT 4 EU European Carriers LTE PN 30049 rev 14 NimbeLink Corp.
    [Show full text]
  • Evolutionary Steps from 1G to 4.5G
    ISSN (Online) : 2278-1021 ISSN (Print) : 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 4, April 2014 Evolutionary steps from 1G to 4.5G Tondare S M1, Panchal S D2, Kushnure D T3 Assistant Professor, Electronics and Telecom Dept., Sandipani Technical Campus Faculty of Engg, Latur(MS), India 1,2 Assistant Professor, Electronics and Telecom Department, VPCOE, Baramati(MS), India 3 Abstract: The journey from analog based first generation service (1G) to today’s truly broadband-ready LTE advanced networks (now accepted as 4.5G), the wireless industry is on a path that promises some great innovation in our future. Technology from manufacturers is advancing at a stunning rate and the wireless networking is tying our gadgets together with the services we demand. Manufacturers are advancing technologies at a stunning rate and also evolution in wireless technology all impossible things possible as market requirement. Keywords: Mobile Wireless Communication Networks, 1G, 2G, 3G, 4G,4.5G I. INTRODUCTION With rapid development of information and was replaced by Digital Access techniques such as TDMA communication technologies (ICT), particularly the (Time division multiple access), CDMA (code division wireless communication technology it is becoming very multiple access) having enhanced Spectrum efficiency, necessary to analyse the performance of different better data services and special feature as Roaming was generations of wireless technologies. In just the past 10 introduced. years, we have seen a great evolution of wireless services which we use every day. With the exponential evolution, B.Technology there has been equally exponential growth in use of the 2G cellular systems includes GSM, digital AMPS, code services, taking advantage of the recently available division multiple access(CDMA),personal digital bandwidth around the world.
    [Show full text]
  • Enabling Massive Iot Toward 6G: a Comprehensive Survey Fengxian Guo, F
    1 Enabling Massive IoT Toward 6G: A Comprehensive Survey Fengxian Guo, F. Richard Yu, Fellow, IEEE, Heli Zhang, Xi Li, Hong Ji, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE Abstract—Nowadays, many disruptive Internet of things (IoT) in the future, including holographic communications, five- applications emerge, such as augmented/virtual reality (AR/VR) sense communications, and wireless brain-computer interfaces online games, autonomous driving, and smart everything, which (WBCI), which will lead to a true immersion into a distant are massive in number, data-intensive, computation-intensive, and delay-sensitive. Due to the mismatch between the fifth gen- environment. At the same time, advances in personal com- eration (5G) and the requirements of such massive IoT-enabled munications will promote the evolution of smart verticals in applications, there is a need for technological advancements and the fifth generation networks (5G) to a higher level, including evolutions for wireless communications and networking toward healthcare, remote education/training, industry Internet, fully the sixth generation (6G) networks. 6G is expected to deliver autonomous driving, and super smart homes/cities. During extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, this paradigm shift, the Internet of Things (IoT) plays a vital which will play a significant role in supporting massive IoT role in enabling these emerging applications by connecting devices to operate seamlessly with highly diverse service require- the physical environment to the cyberspace of communication ments. Motivated by the aforementioned facts, in this paper, systems [1]. we present a comprehensive survey on 6G-enabled massive IoT.
    [Show full text]
  • HDI-TX-301-C-2G-E Series
    HDI-TX-301-C-2G-E Series DM Lite® Transmitter and 3x1 Auto-Switcher for HDMI®, VGA, and Analog Audio Signal Extension over CATx Cable, UK/European Wall Plate The HDI-TX-301-C-2G-E (-B-T or -W-T) is a UK/European wall plate DM Lite® transmitter designed to pair with a DM Lite or DMPS Lite™ receiver to form an extender for HDMI® signals. The DM Lite family of products offers a versatile solution for extending HD, UHD, 2K, and 4K video signals, with stereo or surround sound audio, over a single CAT5e (or higher) cable. A cable length of up to 70 m (230 ft) is supported for HD 1080p, WUXGA, and 2K signals, or up to 40 m (130 ft) for UHD and 4K.1 The HDI-TX-301-C-2G-E includes two HDMI inputs and one VGA input. The VGA input is accompanied by a stereo analog audio input. Auto-switching between the HDMI and VGA inputs enables plug-and-play simplicity. Manual input selection is also available using the front panel INPUT SEL button. The VGA input can accept RGB and component video signals by using an appropriate breakout cable or adapter (not included). The audio input is selected in tandem with the VGA input and can be used by itself with no video source connected. However, it cannot be paired with the HDMI video input. l Pairs with a DM Lite® or DMPS Lite™ receiver l Enables extension of HDMI® video and audio signals NOTE: When paired with an HD-RX-201-C-E or DMPS Lite receiver, the local inputs are switched in combination with the l Converts and extends VGA and analog audio signals HDMI inputs on the receiver, and can also be controlled l Auto-switches between two HDMI inputs and one VGA input remotely through integration with a Crestron® control system.
    [Show full text]