Trade-off Energy and Spectral Efficiency in 5G Massive MIMO System Adeb Salh 1*, Nor Shahida Mohd Shah2*, Lukman Audah1, Qazwan Abdullah1, Norsaliza Abdullah3, Shipun A. Hamzah1, Abdu Saif1 1Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia. 2Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh, Muar, Johor, Malaysia. 3Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh, Muar, Johor, Malaysia. *Corresponding authors’ e-mail:
[email protected],
[email protected] to multiple single active users (UEs) in same time-frequency resource. The EE and SE cannot be simultaneously optimized. ABSTRACT It is still quasi-concave due to noise amplifier, a large number of antennas, and cost of hardware, which decreases the radio A massive multiple-input multiple-output (MIMO) system is frequency chains (RF) [7]-[15]. A large number of antennas in very important to optimize the trade-off energy-efficiency both linear precoder and decoder are needed to select the (EE) and spectral-efficiency (SE) in fifth-generation cellular optimal antenna to limit the noise with uncorrelated networks (5G). The challenges for the next generation depend interference. In addition, deploying more antennas causes on increasing the high data traffic in the wireless higher circuit power consumption. From the perspective of communication system for both EE and SE. In this paper, the energy-efficiency, the increasing base stations in the cellular trade-off EE and SE based on the first derivative of transmit networks reported that the total consumed energy in the whole antennas and transmit power in downlink massive MIMO network approximately 60-80% [16]-[20].