A Review of Different Generations of Mobile Technology Amritpal Singh

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Different Generations of Mobile Technology Amritpal Singh International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 4 Issue 8, August 2015 A Review of Different Generations of Mobile Technology Amritpal Singh distributed over Abstract— Wireless mobile technology has revolutionized the way people communicate with each land areas called cells each cell has its own cell site or base other the hindrance that was caused to the station the frequencies used by neighboring cells are different communicating parties due to distance has become to avoid interference. obsolete a mobile phone has become an integral part of our day to day work the present day mobile phones that II Zero Generation (0G-0.5G) we use have come a long way since the inception of mobile telephone service introduced in USA in 1940s the The work to design a portable telephone system started evolutionary process of wireless mobile technology is immediately after World War II the phase which is broadly classified into generations (0G, 2G, 3G, 4G) categorized under 0G started from 1946 when Motorola and where G stands for generation with 0G being the initial phase and 4G which is in use currently 0G refers to pre Bell systems began operating first mobile telephone system cell phone telephone technology the concept of “cell” was (MTS) this phase is also known as mobile radio telephone introduced in 1G present day mobile phones are capable system phase and pre cellular phase in this generation the of text, voice and video data transfer work is underway telephone systems were quite different from what are in use on development of 5G mobile technology it will have now the mobile telephone systems were mounted on vehicles features of World Wide Wireless Web(WWWW), like cars, trucks etc. the telephone system had a transceiver Dynamic Adhoc wireless network(DAWN) it will have which preformed the function of a transmitter and receiver much higher speed, better connectivity, high capacity and was placed somewhere in the vehicle‘s trunk and was and high error tolerance right now the term 5G is not connected with a wire to the head which consisted of dialing officially used. mechanism and display the head was placed near the driver‘s seat its working principle was, the telephone device would Index Terms— mobile technology, 1G,2G,3G,4G,5G, connect to local telephone network only when it is in a range WWWW, wireless technology, generations of 20 km a central antenna tower was installed in each city having 25 channels number of people who were able to avail I INTRODUCTION . the services of this system was very less as only 25 channels In 1895, Italian inventor and electrical engineer Guglielmo were available these telephone systems had only voice Marconi paved the way for modern wireless communications transmission facility, used analog signals , were very bulky, by transmitting the three-dot Morse code for the letter ‗S‘ had half duplex mode of communication Technologies used over a distance of three kilometers using electromagnetic in 0G systems included PTT (Push to Talk), MTS (Mobile waves since then the wireless transmission has come a long Telephone System), IMTS (Improved Mobile Telephone way technology is evolving at a rapid pace and it is true in Service), AMTS (Advanced Mobile Telephone System), case of mobile technology also mobile or cellular phones OLT and MTD have become a vital element in our day to day work and routine socializing there has been a transition from fixed 0.5G was the successor of 0G technology it had some telephone line systems to mobile phones in the past decade noticeable new features the size was reduced and the there are many factors for this transition one of most telephone systems became portable ARP (autoradiopuhelin) pronounced one being the portability factor. The first brush was launched in 1971 which was the first commercial public we had with mobile wireless technology was after World War mobile network it operated on 8 channels with frequency of II in the form of radio telephones which some cars in USA 147.9-154.87 MHz like 0G these systems had also half used to have in those formative days a mobile operator used duplex mode of communication one path breaking feature of to set up calls and only few channels were available, mobile 0.5 G was the concept of ―cell‖ a cell is an area of some city network is also called cellular network as the network is divided into small sectors also called cells(hence the term cellular phone) cell size being 30 Km these systems didn‘t had handover facility, technologies used in this generation were High Capacity Mobile Telephone System(HCMTS), . 3404 ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 4 Issue 8, August 2015 Public Automated Land mobile(PALM) Fig 2 mobile system of first generation III Second Generation This technology was introduced in 1991 based on technique known as Global System for Mobile Communication(GSM) in this era the signals were digital so this generation systems had a clear edge over their . Fig 1 mobile telephone systems of 0G predecessors it had the facility of text messages, picture messages and video messages the messages were digitally II First Generation (1G) encrypted due to the use of digital signals voice quality became better than previous generations, spectrum is also This technology was introduced in early 1980‘s from this utilized more efficiently and less amount of bandwidth is phase mobile cellular era began this technology used analog needed for voice and video transmission 2G also introduced signals and had only voice transmission facility the global the ability to download media content on mobile phones the mobile phone market grew after 1G technology was size was considerably reduced from the first generation phones data speed achieved by 2G phones was up to 100 introduced these phones had low capacity, unreliable kbps. The downside of 2G was that it was dependent on handoff, poor voice links, no security from eavesdropping proximity and location to towers 2G systems can be classified these telephones worked on circuit switching, operated at by their multiple access techniques as either TDMA or 150 MHz frequency and speed of 2.4kb/s the voice quality FDMA was poor, suffered interference due to use of analog signals ,had limited capacity of users, these phones were large in size TDMA (2G): 2G Mobiles uses TDMA (Time Division and had poor battery life due to their size there was one more Multiple Access) technology in some of its models. It actually issue concerning secure communication as anyone was able divides the band into three time-periods TDMA contains to hear the transmission after tuning to the same frequency, technologies GSM (Global Service Mobile Communication), semiconductors and microprocessors were used in the design which is the most common technology, uses widely across the of phones of this generation some noticeable models of 1G world use of SIM is a prominent feature of GSM. It needs were Advanced Mobile Phone System (AMPS) launched in only a SIM to start communication at a particular region. USA in 1982, Radiocom 2000 launched in France ,Total Access Communication system(TACS), BTMI launched in CDMA (2G): CDMA works using the entire band with the Italy and Nordic Mobile Telephony(NMT) used in Denmark, help of code. CDMA is based on a wide spectrum as many Iceland, Finland and Sweden. The first generation of calls laid over each other identifying on the basis of unique analogue mobile systems was launched in Japan by NTT in code 1979 and covered Tokyo‘s 20m people with 23 base stations Further variants of 2G are 2.5G-GPRS and 2.75-EDGE and by 1984 covered the whole of the country, in USA Motorola pioneered in creating first mobile network in Washington DC Fig 3 mobile systems of 2G 3405 ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 4 Issue 8, August 2015 Further variants of 3G are: 2.5 G--GPRS (general Packet Radio service): it has higher data capacity than 2G GPRS adds packet switched 3.5G – HSDPA (High-Speed Downlink Packet Access): it capabilities and TDMA networking it sends text and is a mobile telephony protocol it provides packet based graphics rich data at a high speed this technology provides service it provides a packet based service it improves the data rates up to 115kbps has features like WAP, e-mail, speed and quality of downlink data transmission on networks MMS and Internet. based on UMTS HSDPA consist of Multiple-Input Multiple-Output (MIMO), Hybrid Automatic Request 2.75—EDGE (Enhanced Data Rates For GSM (HARQ), Adaptive Modulation and Coding (AMC), Evolution):it an extended version 2.5 G it provides fast advanced receiver design and fast cell search provides the transmission without glitches it can transmit packet switched speed ranging from 8-10 Mbps downlink which is much and circuit switched data. more than 3G it has less latency as compared to 3G and is cheap because it only has to be upgraded from 3G. IV Third Generation 3.75G – HSUPA (High-Speed Uplink Packet Access): it is It is based on the International Telecommunication Union also known as 3.75G this protocol strives for providing (ITU) family of standards under the International Mobile higher uplink speeds up to 5.8Mbps it enhances the uplink Telecommunications programme it was implemented in year speed by increasing throughput, capacity and decreasing 2000, IMT-2000 this technology redefined the definition of a delays. HSUPA works on request grant principle in which mobile phone which till now was primarily a communication user will seek permission from scheduler to transmit data device but from 3G era internet, email and other web (data is send in packets), scheduler then decides at what time features became associated with mobile phones this the user can send data and number of users who will be technology supports data transfer rates up to 2Mbps, supports permitted to send data.
Recommended publications
  • NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
    VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications.
    [Show full text]
  • Government Services, Staff, and Development
    overnment services, staff, and development efforts will be increasingly mobile in coming Gyears as devices and applications continue to proliferate at an astounding rate. Industry experts stress how quickly the change is coming. Within the next five years, “more users will connect to the Internet over mobile devices than desktop PCs.” “By 2014,” according to Gartner, “90 percent of organizations will support corporate applications on personal devices.” Government in a In the current mobile landscape over 1 billion people already own mobile devices. The iPhone App Mobile World Store holds over 350,000 active apps and the downloads of those apps stands at over 10 billion The mobile platform offers new opportunities for (there are only 6.9 billion people currently alive on the governments to engage with citizens by either capturing attention at the citizen’s point of planet). That’s why Gartner put tablets and mobile interest or offering new ways to interact when apps on its list of top 10 technologies that enterprises the person feels most ready to do so. should invest in for 2011. Center for Technology in Government mobile_issuebrief.indd 1 10/11/2011 12:36:50 PM GOVERNMENT IN A MOBILE WORLD The usual concerns that come with any technology innovation also accompany the mobile world: security, USA.GOV MOBILE APPS accessibility, privacy, development, deployment. As with any technology, mobile brings its own unique characteristics to these concerns. While critical for government, the single most important fact is that developments in the mobile world will directly impact nearly every aspect of government operations including delivery of services, citizen engagement, allocation of IT resources, staff support, and training.
    [Show full text]
  • The Evolution of U.S. Spectrum Values Over Time
    The Evolution of U.S. Spectrum Values Over Time Michelle Connolly, Department of Economics, Duke University Nelson Sa, Department of Economics, Brandeis University Azeem Zaman, Department of Statistics, Harvard University Chris Roark, Department of Economics, University of Chicago Akshaya Trivedi, Trinity College, Duke University, Class of 2018 Working Paper Series 2018 | 121 Evolution of spectrum values 1 The Evolution of U.S. Spectrum Values Over Time Michelle Connolly1, Nelson Sá2, Azeem Zaman3, Chris Roark4, and Akshaya Trivedi5 February 13, 2018 Abstract We consider 1997 to 2015 data from FCC spectrum auctions related to cellular services to attempt to identify intrinsic spectrum values. Relative to previous literature, we control for license specific auction rules, and introduce measures to separate out technological progress that effectively reduces spectrum scarcity from progress that increases demand. Results confirm that technological changes have led to increases in the relative value of higher frequencies. Surprisingly, 47 percent of these licenses have been won by “small” bidders, representing 27 percent of the real value of these licenses. The use of bidding credits further appears to consistently reduce auction competition. Keywords: Spectrum, Spectrum Scarcity, Auctions, FCC, Auction Rules, Mobile Applications, Spectral Efficiency, Broadband Speeds, Closed Auctions, Small Bidders, “The Google Effect” JEL Codes: L5, O3, K2 1 Corresponding author: Michelle Connolly, [email protected], 213 Social Sciences, Box 90097, Department of Economics, Duke University, Durham, NC 27708. 2 Department of Economics, Brandeis University. 3 Department of Statistics, Harvard University. 4 Department of Economics, University of Chicago. 5 Trinity College, Duke University Class of 2018. We gratefully acknowledge the support of NSF grant 1314468.
    [Show full text]
  • Evolution of Access Network Sharing and Its Role in 5G Networks
    applied sciences Review Evolution of Access Network Sharing and Its Role in 5G Networks Nima Afraz * , Frank Slyne , Harleen Gill and Marco Ruffini * CONNECT Centre, Trinity College, The University of Dublin, 2 Dublin, Ireland; [email protected] (F.S.); [email protected] (H.G.) * Correspondence: [email protected] (N.A.); marco.ruffi[email protected] (M.R.) Received: 3 October 2019; Accepted: 18 October 2019; Published: 28 October 2019 Abstract: This paper details the evolution of access network sharing models from legacy DSL to the most recent fibre-based technology and the main challenges faced from technical and business perspectives. We first give an overview of existing access sharing models, that span physical local loop unbundling and virtual unbundled local access. We then describe different types of optical access technologies and highlight how they support network sharing. Next, we examine how the concept of SDN and network virtualization has been pivotal in enabling the idea of “true multi-tenancy”, through the use of programmability, flexible architecture and resource isolation. We give examples of recent developments of cloud central office and OLT virtualization. Finally, we provide an insight into the role that novel business models, such as blockchain and smart contract technology, could play in 5G networks. We discuss how these might evolve, to provide flexibility and dynamic operations that are needed in the data and control planes. Keywords: access networks; network sharing; 5G networks; multi tenancy; optical access; sharing economics 1. Introduction By its nature, a telecommunications network is a shared resource that interconnects multiple nodes. Network sharing is part of a fundamental principle of statistical multiplexing of link capacity.
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • Industry White Paper for Construction
    Industry White Paper for Construction Anyone in the construction industry can appreciate how instant communication keeps projects on time and on budget. It’s why the construction industry was one of the earliest adopters of push-to-talk (PTT) technologies on mobile phones. However, as mobile technology has moved forward, PTT has been stuck in the past. That is, until now. Voxer brings push-to-talk into the modern age, is available for most smartphones, and gives more capability and flexibility than any other instant communication solution on the market. How can Voxer help construction crews? ‣ Turn your smartphone into a walkie-talkie - stream audio from your phone even when you’re out of the app ‣ Eliminate range problems - get broader coverage with voice communication that works on any 2G, 3G, 4G or WiFi network ‣ Broadcast information quickly - create team contacts for one-touch communication to large groups of workers ‣ Never miss a message - live and recorded audio coupled with loud, repetitive alerts ensures that nothing is lost ‣ Keep in touch from your desktop - use a web browser to listen and respond to multiple conversations at a time 1 Problems with Traditional Push-to-Talk The core functionality of PTT is incredibly useful, however its live-only state ofers limited capability. When communication is “live-only” (e.g. two-way radios, cell phone PTT, phone calls) everyone is continuously interrupted, and if an employee is unavailable, important information can be lost and huge delays are possible. Traditional push-to-talk also requires expensive hardware that’s often outdated. Radios can cost hundreds or thousands of dollars a piece and have extended costs associated with maintenance.
    [Show full text]
  • The Impact of Mobile Technology on Teaching and Learning in the Undergraduate Population Patrick Davis
    The Impact of Mobile Technology on Teaching and Learning in the Undergraduate Population Patrick Davis 2014 Maxine Smith Fellowship Introduction: On‐Demand Learning Increasing access, limiting cost, and sustaining quality standards delineate an intolerable wish list, given the level of inconsistency among these drivers. The solution in many cases has been introducing exclusivity to post-secondary education through narrowing paths for learners. The marketplace for mobile devices (tablets, smartphones, e-Readers, etc.) is varying and developing precipitously, conveying with it new devices, new standards and new opportunities around mobile capabilities. For higher education institutions that want to facilitate learning on mobile devices, these changes will continue to have a substantial influence on these efforts. This paper highlights mobile strategic planning, partnering with vendors, the results of a mobilization survey given to the Maxine Smith Fellow 2014 class, and recommendation for uses of mobile technology. Overview of TBR Strategic Plan for Mobilization The use of mobile technologies has grown to such an extent over recent years that they now overtake the proliferation of personal computers in modern professional and social contexts (Attewell, 2005). The ready availability and uptake of devices such as mobile phones, personal digital assistants and mobile music players, have permeated the manner and means of human communication, socializing and entertainment to such an extent that is it rare to find a person in western society who does not own at least one such device. And yet, the pedagogical use of these powerful devices is not widespread in higher education. Notwithstanding the reality of the ‘digital divide’, the declining cost and mounting social currency associated with mobile devices, means that many students own one or more such devices.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • 18-452/18-750 Wireless Networks and Applications Overview Cellular
    Overview 18-452/18-750 Surveys Wireless Networks and Applications Cellular principles Lecture 17: » Cellular design Cellular - Principles » Elements of a cellular network » How does a mobile phone take place? Peter Steenkiste » Handoff » Frequency Allocation, Traffic Engineering Early cellular generations: 1G, 2G, 3G Spring Semester 2017 Today’s cellular: LTE http://www.cs.cmu.edu/~prs/wirelessS17/ Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc. Peter A. Steenkiste, CMU 1 Peter A. Steenkiste, CMU 2 The Advent of Cellular versus WiFi Cellular Networks Cellular WiFi Mobile radio telephone system was based on: Licensed Unlicensed » Predecessor of today’s cellular systems Spectrum » High power transmitter/receivers Provisioned Unprovisioned » Could support about 25 channels Service model » in a radius of 80 Km “for pay” “free” – no SLA To increase network capacity: » Multiple lower power transmitters (100W or less) MAC services Fixed bandwidth Best effort » Smaller transmission radius -> area split in cells SLAs no SLAs » Each cell with its own frequencies and base station » Adjacent cells use different frequencies Implications for level of service (SLAs), cost, » The same frequency can be reused at sufficient distance nature of protocols, …? These trends are continuing … Peter A. Steenkiste, CMU 3 Peter A. Steenkiste, CMU 4 Page 1 The Cellular Idea The MTS network http://www.privateline.com/PCS/images/SaintLouis2.gif In December 1947 Donald H. Ring outlined the idea in a Bell labs memo Split an area into cells, each with their own low power towers Each cell would use its own frequency Did not take off due to “extreme-at-the-time” processing needs » Handoff for thousands of users » Rapid switching infeasible – maintain call while changing frequency » Technology not ready Peter A.
    [Show full text]
  • Improving M-Examination Results System Using Multimedia Messaging Service
    World Applied Sciences Journal 14 (11): 1620-1627, 2011 ISSN 1818-4952 © IDOSI Publications, 2011 Improving m-Examination Results System Using Multimedia Messaging Service Mohd Hilmi Hasan, Nazleeni Samiha Haron, Nur Syafiqah Syazwani Md Yazid Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia Abstract: Mobile devices are becoming more important in daily lives for not just making phone calls, but also for information gathering, personal management and entertainment. They have also gained an increasing demand in education field, for instance m-learning, mobile time table system and many others. The objective of this paper is to present the improvement of current m-examination results systems that send results via SMS. The system was developed in 3-tier architecture and tested by 35 respondents in which it accepts request from student in SMS, does information searching, converts information into PDF document and sends the document to student via MMS. Two types of tests were conducted to evaluate the system namely functional and user acceptance tests. The system was successfully developed and believed can improve the SMS-based examination results system. The study implies potential time saving where MMS-based examination results slip can be used for official transactions on top of its flexibility that is accessible anytime and anywhere. For future works, it is proposed that more security measures be implemented to ensure reliability and both MMS-based and SMS-based functionalities are integrated in a single system to offer more benefits to users. Key words: MMS SMS MMS-based system SMS-based system Examination results retrieval INTRODUCTION system.
    [Show full text]
  • Federal Communications Commission FCC 00-361 Before The
    Federal Communications Commission FCC 00-361 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Automatic and Manual Roaming Obligations ) Pertaining to ) WT Docket No. 00-193 Commercial Mobile Radio Services ) ) ) ) ) NOTICE OF PROPOSED RULEMAKING Adopted: October 4, 2000 Released: November 1, 2000 Comment Date: January 5, 2001 Reply Date: February 5, 2001 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION 1 II. BACKGROUND 2 A. Roaming 2 B. Current Requirements 5 C. Current State of Marketplace 8 III. NOTICE OF PROPOSED RULEMAKING 14 A. Automatic Roaming 17 B. Manual Roaming 30 C. Sunset of Roaming Rule(s) 32 IV. PROCEDURAL MATTERS 33 A. Regulatory Flexibility Act 33 B. Ex Parte Rules 34 C. Filing Procedures 35 D. Further Information 40 V. ORDERING CLAUSES 41 Appendix – Initial Regulatory Flexibility Analysis Federal Communications Commission FCC 00-361 I. INTRODUCTION 1. In this notice of proposed rulemaking (NPRM), we initiate a new proceeding to consider whether the Commission should adopt an “automatic” roaming rule that would apply to Commercial Mobile Radio Service (CMRS) systems and whether we should sunset the “manual” roaming requirement that currently applies to those systems.1 We recently terminated our previous consideration of these roaming issues under CC Docket No. 94-54, a long-standing proceeding.2 In light of the significant growth and development during the last few years of CMRS services provided by cellular, broadband Personal Communications Service (PCS), and Specialized Mobile Radio (SMR) systems, and given recent advancements in CMRS technologies, we believe that a new docket dedicated solely to roaming issues best ensures that we will have up-to-date, pertinent information as we consider whether, given the state of today’s marketplace, there is a need for a regulatory regime for roaming services.
    [Show full text]
  • 5G – Introduction & Future of Mobile Broadband
    International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.3, Issue 4, Oct 2013, 119-124 © TJPRC Pvt. Ltd., 5G – INTRODUCTION & FUTURE OF MOBILE BROADBAND COMMUNICATION REDEFINED R. GOWRI SHANKAR RAO & RAVALI SAI Vel Tech Dr. RR & Dr. SR Technical University, Department of Electronics and Communication Engineering, Avadi, Chennai, Tamil Nadu, India ABSTRACT 5G stands for 5th Generation Mobile Technology. It has changed the means to use cell phones within very high bandwidth. The 5G technology has extraordinary data capabilities and has ability to tie together unrestricted call volumes and infinite data broadcast within latest mobile operating system. The 5G technologies include all type of advanced features which makes 5G mobile technology most powerful and in huge demand in near future. The integration of 3G and 4G has brought new application and brings the choice of hosting new services. 5G technology includes camera, MP3 recording, video player, large phone memory, dialing speed, audio player and much more have been explored. The Router and switch technology used in 5G network providing high connectivity. This paper introduces the technology and explain the difference between 4G and 5G techniques such as increased maximum throughput; for example lower battery consumption, lower outage probability (better coverage), high bit rates in larger portions of the coverage area, cheaper or no traffic fees due to low infrastructure deployment costs, or higher aggregate capacity for many simultaneous users. KEYWORDS: Bandwidth, Router, Bit Rate, 5G, Operating System INTRODUCTION This 5G technology and its predecessors are going to give tough competition to laptops and normal computers whose market will be affected.
    [Show full text]