A Softwarized Perspective of the 5G Networks

Total Page:16

File Type:pdf, Size:1020Kb

A Softwarized Perspective of the 5G Networks A softwarized perspective of the 5G networks Kleber Vieira Cardoso, Cristiano Bonato Both, Lucio´ Rene Prade, Ciro J. A. Macedo, Victor Hugo L. Lopes F Abstract—The main goal of this article is to present the fundamental to clarify that this leap hides the various intermediate steps that theoretical concepts for the tutorial presented in IEEE NetSoft 2020. comprise it. In the telecommunications industry, including for The article explores the use of software in the 5G system composed of advertising reasons, a significant amount of technological devel- the Radio Access Network (RAN) and the core components, following opments and innovations accumulate before defining a generation, the standards defined by 3GPP, particularly the Release 15. The article which was no different at 5G networks. As an example, the Re- provides a brief overview of mobile cellular networks, including basic leases provided by the 3GPP (3rd Generation Partnership Project) concepts, operations, and evolution through the called ‘generations’ of mobile networks. From a software perspective, RAN is presented in the that is one of the leading organizations for standardizing wireless context of 4G and 5G networks, which includes the virtualization and mobile networks. The 4G/LTE networks (Long-Term Evolution) disaggregation concepts. A significant part of the article is dedicated to were introduced in 2008 by Release 8 [5] and, since then, have 5G networks and beyond, focusing on core, i.e., considering the Service- received several updates (represented by new Releases) until the Based Architecture (SBA), due to its relevance and totally softwarized 5G networks were officially introduced by Release 15 [6] in 2018. approach. Finally, the article briefly describes the demonstrations pre- On the other hand, there are technical factors that also support the sented in IEEE NetSoft 2020, providing the link for the repository that definition of each generation. In the 5G system, the radio spectrum has all material employed in the tutorial. usage is expanding to hundreds of MHz or some units of GHz, but it also going to frequency bands of tens of GHz. Moreover, 5G networks consolidate an intense process of softwarization that 1 INTRODUCTION stands out for the adoption of cloud systems and technologies In the generations leading up to the fifth generation of wireless such as virtualization [7], software-defined networks [8], network cellular mobile networks, the supreme effort was made in the slicing [9], and Service-Based Architecture (SBA) [10]. massification of access to customers and increasing the transmis- In addition to the technological aspects, the 5G networks in- sion rates. However, more than just improving bandwidth and troduce changes in the companies’ business model. Traditionally, reducing latency, 5G networks [1] will allow truly disruptive operators of wireless mobile communication systems have focused solutions to emerging in all types of industries [2]. Although many on end-users as the main sources of revenue. In 5G networks, the countries, such as Brazil, are still discussing and preparing for intention is to expand (or even migrate) the focus to have industries the deployment of 5G networks, since 2019, several countries as primary customers [11], [12]. Three main requirements (or (e.g., China, South Korea, and the United States) are already scenarios) have been defined to support this expansion of the implementing, testing, and effectively using the latest generation telecommunications companies’ business model: enhanced mobile of mobile wireless networks. More than 2.4 billion devices are broadband (eMBB), ultra-reliable low-latency communications expected to use 5G networks by 2025 [3]. For now, rates close (URLLC), and massive machine-type communications (mMTC). to (and even higher than) 1 Gbps are still the main novelties, These scenarios are illustrated in Fig. 1(a), which was introduced arXiv:2006.10409v3 [cs.NI] 24 Aug 2020 but several services, mainly based on Internet of Things (IoT), by ITU (International Telecommunication Union) [13], in 2015, as began to be planned and implemented. Autonomous cars, Industry part of the vision of what 5G networks would be. This illustration, 4.0, and virtual/augmented/mixed reality are some of the bets for which presents the leading capabilities of each scenario, is widely relevant applications and tend to serve as interesting use cases for used to try to summarize some relevant properties of 5G networks. new network features. However, as in previous generations, it is In order to meet the requirements of the different scenarios, difficult to predict accurately which applications or services will the concepts of network software began to be adopted, both by be adopted. For the time being, the only consensus is that 5G academia and industry, to make the development of 5G networks networks, when deployed on a significant scale, will represent a (or systems) viable in recent years and also their evolution [9]. new step for wireless communications and will have a deep impact The main reason for the intensive introduction of software in in the society [4]. 5G systems is to extend the flexibility to the mobile network The fifth-generation represents a remarkable technological architecture, supporting different requirements in challenging sce- leap over the fourth generation, introducing significant hardware narios emerging in the digitalized society. Moreover, with the and, above all, considerable software innovations. It is essential network softwarization, it is possible to enjoy of traditional cloud computing, as well as its smaller-scale variants, i.e., fog and Kleber, Ciro, and Victor are with Universidade Federal de Goias´ (UFG), edge. In this context, radio access and core network functions Brazil. Email: fkleber, ciro.macedo, [email protected] Cristiano and Lucio´ are with the University of Vale do Rio dos Sinos are now implemented using the advantages of cloud computing, (UNISINOS), Brazil. Email: fcbboth, [email protected] such as abundant storage, large-scale processing, elasticity, etc. In 2 eMBB later, data-oriented communication devices. Since the first com- Gigabytes in a second, data 3D video, UHD/4K/8K screens mercial mobile cellular network, in 1979, until nowadays, several transfers at extremely high Gigabytes em um segundo, new technologies have been introduced in the communication sys- datatransferências rates de dados a taxa Work Vídeo and play3D, telasin the UHD/4K/8K Cloud de dados extremamente altas tems, but also several concepts remain the same or are very similar. Smart homes/buildings, video Augmented reality camerasDomicílios/prédios inteligentes, In this section, we present relevant concepts of mobile networks in Industrial automation, câmeras de vídeo general and the ones related to cellular networks. Additionally, we Industry 4.0 Voice services Mission-critical applications/ describe the history of the mobile cellular networks very briefly Serviços de voz Smart cities, sensor services, e-Health through the ‘generations’, starting from the first until the fourth, networks, IoT with most of the attention to the fourth generation. The fifth- Autonomous cars generation and beyond have the next section dedicated to them. mMTC URLLC (a) 5G scenarios 2.1 Basic concepts Peak data User perceived The fundamental idea of a cellular network is the use of eMBB High data rate rate relevance multiple low-power transceivers (transmitters+receivers) to offer Average Traffic communication to mobile devices. Actually, the power of these Spectral capacity by Low transceivers is low compared with their predecessors, but it is efficiency area very high compared with mobile devices. Traditionally, these transceivers are mounted in a mast or tower, at an elevated point, Network and have a control unit. This configuration is named as a Base energy Mobility Station or BS, which is responsible for covering an area using a efficiency band of frequencies. Assuming the most traditional positioning in the center of the coverage area, the area’s conceptual representa- Connection mMTC density Latency URLLC tion as a hexagon was the appropriate choice because the distance between the centers of all adjacent areas is the same (equal to (b) Capabilities of the scenarios p 3R). Therefore, a mobile cellular network can be represented Fig. 1. Scenarios (or requirements) defined for 5G networks (left) and as a collection of the neighboring regions, each resembling a capabilities offered in these scenarios (right). cell, as illustrated in Fig. 2(a). In practice, the environmental characteristics and the propagation conditions tend to degenerate the mobile cellular network into something more similar to a addition to enable new services, in the long run, the softwarization Voronoi diagram or tessellation, as illustrated in Fig. 2(b). is expected to reduce the costs of deploying and operating 5G The deployment of the BSs is generally defined by a previ- systems. ous study that takes into consideration factors as topographical The remainder of this article is structured as follows. Sec- characteristics, signal propagation conditions, limitations on siting tion 2 introduces basic concepts related to mobile network cellular antennas, and demand of the users. While in-site measurements networks and the operation of this type of system. This section are common, most of the study is generally performed with presents a brief historic review of the generations until the forth. propagation models that can estimate the signal power
Recommended publications
  • Running a Basic Osmocom GSM Network
    Running a basic Osmocom GSM network Harald Welte <[email protected]> What this talk is about Implementing GSM/GPRS network elements as FOSS Applied Protocol Archaeology Doing all of that on top of Linux (in userspace) Running your own Internet-style network use off-the-shelf hardware (x86, Ethernet card) use any random Linux distribution configure Linux kernel TCP/IP network stack enjoy fancy features like netfilter/iproute2/tc use apache/lighttpd/nginx on the server use Firefox/chromium/konqueor/lynx on the client do whatever modification/optimization on any part of the stack Running your own GSM network Until 2009 the situation looked like this: go to Ericsson/Huawei/ZTE/Nokia/Alcatel/… spend lots of time convincing them that you’re an eligible customer spend a six-digit figure for even the most basic full network end up with black boxes you can neither study nor improve WTF? I’ve grown up with FOSS and the Internet. I know a better world. Why no cellular FOSS? both cellular (2G/3G/4G) and TCP/IP/HTTP protocol specs are publicly available for decades. Can you believe it? Internet protocol stacks have lots of FOSS implementations cellular protocol stacks have no FOSS implementations for the first almost 20 years of their existence? it’s the classic conflict classic circuit-switched telco vs. the BBS community ITU-T/OSI/ISO vs. Arpanet and TCP/IP Enter Osmocom In 2008, some people (most present in this room) started to write FOSS for GSM to boldly go where no FOSS hacker has gone before where protocol stacks are deep and acronyms are
    [Show full text]
  • The Evolution of U.S. Spectrum Values Over Time
    The Evolution of U.S. Spectrum Values Over Time Michelle Connolly, Department of Economics, Duke University Nelson Sa, Department of Economics, Brandeis University Azeem Zaman, Department of Statistics, Harvard University Chris Roark, Department of Economics, University of Chicago Akshaya Trivedi, Trinity College, Duke University, Class of 2018 Working Paper Series 2018 | 121 Evolution of spectrum values 1 The Evolution of U.S. Spectrum Values Over Time Michelle Connolly1, Nelson Sá2, Azeem Zaman3, Chris Roark4, and Akshaya Trivedi5 February 13, 2018 Abstract We consider 1997 to 2015 data from FCC spectrum auctions related to cellular services to attempt to identify intrinsic spectrum values. Relative to previous literature, we control for license specific auction rules, and introduce measures to separate out technological progress that effectively reduces spectrum scarcity from progress that increases demand. Results confirm that technological changes have led to increases in the relative value of higher frequencies. Surprisingly, 47 percent of these licenses have been won by “small” bidders, representing 27 percent of the real value of these licenses. The use of bidding credits further appears to consistently reduce auction competition. Keywords: Spectrum, Spectrum Scarcity, Auctions, FCC, Auction Rules, Mobile Applications, Spectral Efficiency, Broadband Speeds, Closed Auctions, Small Bidders, “The Google Effect” JEL Codes: L5, O3, K2 1 Corresponding author: Michelle Connolly, [email protected], 213 Social Sciences, Box 90097, Department of Economics, Duke University, Durham, NC 27708. 2 Department of Economics, Brandeis University. 3 Department of Statistics, Harvard University. 4 Department of Economics, University of Chicago. 5 Trinity College, Duke University Class of 2018. We gratefully acknowledge the support of NSF grant 1314468.
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • NSP Network Services Platform Release 18.6 Glossary
    NSP Network Services Platform Release 18.6 Glossary 3HE-14073-AAAB-TQZZA Issue 1 June 2018 NSP Legal notice Nokia is a registered trademark of Nokia Corporation. Other products and company names mentioned herein may be trademarks or tradenames of their respective owners. The information presented is subject to change without notice. No responsibility is assumed for inaccuracies contained herein. © 2018 Nokia. Release 18.6 June 2018 2 3HE-14073-AAAB-TQZZA Issue 1 About this document NSP Glossary 1 About this document 1.1 Purpose The NSP Glossary defines terms, acronyms, and initialisms used in the NSP documentation. Glossary entries that are marked with an asterisk (*) are reproduced with permission from LTE – The UMTS Long Term Evolution: A Pocket Dictionary of Acronyms, © 2009 Stefania Sesia, Issam Toufik, and Matthew Baker, available at http://www.wiley.com/go/sesia_theumts. 1.2 Document support Customer documentation and product support URLs: • Customer Documentation Welcome Page • Technical support • Documentation feedback Release 18.6 June 2018 Issue 1 3HE-14073-AAAB-TQZZA 3 About this document NSP Release 18.6 June 2018 4 3HE-14073-AAAB-TQZZA Issue 1 Glossary NSP Glossary Numerics 10/100/1000Base-FX A networking standard that supports data transfer rates of up to 1000 Mb/s over two optical fibers. 10/100/1000Base-TX An Ethernet technology that supports data transfer rates of up to 1000 Mb/s using twisted-pair copper wire. 10/100Base-TX An Ethernet standard that supports data transfer rates of up to 100 Mb/s using two pairs of data-grade, twisted-pair copper wire.
    [Show full text]
  • Openairinterface Core Network: Recent Enhancements in OAI EPC Beken Dincer, BLACKNED and Gauthier Lionel, EURECOM Outline
    OpenAirInterface Core Network: Recent enhancements in OAI EPC Beken Dincer, BLACKNED and Gauthier Lionel, EURECOM Outline . EPC fundamentals . OAI Core Network Overview . Recent developments . OAI Core Network detailed . Future plans 25/06/2019 - - p 1 Outline . EPC fundamentals 3GPP picture of network function and interfaces. Releases and features . OAI Core Network Overview . Recent developments . OAI Core Network detailed . Future plans 25/06/2019 - - p 2 Core Network Fundamentals – Purpose of CN . Evolved Packet Core Network Purpose and history Evolved Packet Core (EPC) is a framework for providing converged voice and data on a 4G Long-Term Evolution (LTE) network. Source http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core 25/06/2019 - - p 3 Core Network Fundamentals . High level functions Network Access Control Functions. – Authentication and authorization, admission control, Policy and charging enforcement Packet Routing and Transfer Functions: IP header compression function, packet screening. Mobility Management Functions. – Reachability management for UE in ECM-IDLE state Security Functions. Radio Resource Management Functions. Network Management Functions (O&M) – GTP-C signaling based Load and Overload Control, Load balancing between MME, MME control of overload, PDN GW control of overload 25/06/2019 - - p 4 Core Network Fundamentals - Architecture 25/06/2019 - - p 5 Core Network Fundamentals – Access Networks WiMax, CDMA2000, WLAN, fixed networks 25/06/2019 - - p 6 Core Network Fundamentals –
    [Show full text]
  • Osmobsc VTY Reference I
    OsmoBSC VTY Reference i OsmoBSC VTY Reference OsmoBSC VTY Reference ii Copyright © 2012-2019 This work is copyright by sysmocom - s.f.m.c. GmbH. All rights reserved. OsmoBSC VTY Reference iii COLLABORATORS TITLE : OsmoBSC VTY Reference ACTION NAME DATE SIGNATURE WRITTEN BY September 28, 2021 REVISION HISTORY NUMBER DATE DESCRIPTION NAME v1 13th August 2012 Initial hf v2 5th March 2014 Update to match osmo-bsc version 0.13.0-305 hf v3 6th June 2019 Update to match osmo-bsc version 1.4.0.84-3f1f dw OsmoBSC VTY Reference iv Contents 1 VTY reference 1 1.1 Common Commands . .1 1.1.1 end . .2 1.1.2 exit . .2 1.1.3 help . .2 1.1.4 list [with-flags] . .2 1.1.5 show running-config . .3 1.1.6 show vty-attributes . .3 1.1.7 show vty-attributes (application|library|global) . .3 1.1.8 write . .4 1.1.9 write file [PATH] . .4 1.1.10 write memory . .4 1.1.11 write terminal . .4 1.2 view..........................................................5 1.2.1 enable [expert-mode] . .5 1.2.2 logging color (0|1) . .5 1.2.3 logging disable . .5 1.2.4 logging enable . .6 1.2.5 logging filter all (0|1) . .6 1.2.6 logging filter imsi IMSI . .6 1.2.7 logging level (rll|mm|rr|rsl|nm|pag|meas|msc|ho|hodec|ref|ctrl|filter|pcu|lcls|c... .7 1.2.8 logging level force-all (debug|info|notice|error|fatal) . 10 1.2.9 logging level set-all (debug|info|notice|error|fatal) .
    [Show full text]
  • F5 and the Growing Role of GTP for Traffic Shaping, Network Slicing, Iot, and Security
    OVERVIEW F5 and the Growing Role of GTP for Traffic Shaping, Network Slicing, IoT, and Security For years, F5 BIG-IP solutions have managed GPRS Tunneling Protocol (GTP) traffic. Now, in part due to EU regulations, GTP traffic growth is much higher than ever before. International trends show that mobile data is increasing, as is the demand for smart and secure GTP traffic handling. In this document, we will explain GTP, where it is typically used, and where BIG-IP solutions provide significant value. What is GTP? GTP is a group of IP-based communication protocols used to carry General Packet Radio Service (GPRS) within GSM, UMTS, and LTE networks. In 3GPP architectures, GTP and Proxy Mobile IPv6-based interfaces are specified on various interface points. GTP in GPRS (2.5G and 3G) Networks GTP is a set of three separate protocols: GTP Control (GTP-C), GTP User (GTP-U), and GTP Prime (GTP’). GTP-C is used within the GPRS core network for signaling between gateway GPRS support nodes (GGSN) and serving GPRS support nodes (SGSN), as demonstrated by the Gn interface on the diagram below. GTP-C allows the SGSN to activate and deactivate a user’s session, adjust quality- of-service parameters, or update sessions when subscribers arrive from another SGSN. HLR MSC Gr Gs luPS Internet Gi Gn SGSN RNC UMTS Radio Network (RAN) GGSN Gb Corporate SGSN PCU GSM Radio Network Network (BSS) Figure 1: GTP in GPRS (2.5G and 3G networks). OVERVIEW | F5 and the Growing Role of GTP 2 GTP-U carries user data within the GPRS core network, and between the radio access network and core network.
    [Show full text]
  • Leveraging Programmable Dataplanes for a High Performance 5G User Plane Function
    Leveraging Programmable Dataplanes for a High Performance 5G User Plane Function Abhik Bose∗ Diptyaroop Maji† Prateek Agarwal Department of Computer Science Department of Computer Science Department of Computer Science & Engineering Indian Institute of & Engineering Indian Institute of & Engineering Indian Institute of Technology Bombay, India Technology Bombay, India Technology Bombay, India abhik@cse:iitb:ac:in diptyaroop@cse:iitb:ac:in prateekag@cse:iitb:ac:in Nilesh Unhale Rinku Shah Mythili Vutukuru‡ Department of Computer Science Department of Computer Science Department of Computer Science & Engineering Indian Institute of & Engineering Indian Institute of & Engineering Indian Institute of Technology Bombay, India Technology Bombay, India Technology Bombay, India nileshunhale@cse:iitb:ac:in rinku@cse:iitb:ac:in mythili@cse:iitb:ac:in ABSTRACT work presents a preliminary implementation towards a com- Emerging 5G applications require a dataplane that has a high prehensive programmable dataplane-accelerated 5G UPF. forwarding throughput and low processing latency, in ad- dition to low cost and power consumption. To meet these CCS CONCEPTS requirements, the state-of-the-art 5G User Plane Functions • Networks ! In-network processing; Programmable (UPFs) are built over high performance packet I/O mech- networks; Network performance analysis; Mobile networks. anisms like the Data Plane Development Kit (DPDK), and further offload some functionality to programmable data- KEYWORDS plane hardware. In this paper, we design and implement 5G core, cellular networks, programmable networks, DPDK several standards-compliant UPF prototypes, beginning with a software-only DPDK-based UPF, progressing to designs ACM Reference Format: which offload different functions to programmable hardware. Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku Shah, and Mythili Vutukuru.
    [Show full text]
  • 5GS Roaming Guidelines Version 3.0 17 November 2020
    GSM Association Non-confidential Official Document NG.113 - 5GS Roaming Guidelines 5GS Roaming Guidelines Version 3.0 17 November 2020 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2020 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V3.0 Page 1 of 49 GSM Association Non-confidential Official Document NG.113 - 5GS Roaming Guidelines Table of Contents 1 Introduction 4 1.1 Overview 4 1.2 Scope 4 2 Definition of Terms and Acronyms 5 2.1 Acronyms 5 2.2 Terms 7 2.3
    [Show full text]
  • 18-452/18-750 Wireless Networks and Applications Overview Cellular
    Overview 18-452/18-750 Surveys Wireless Networks and Applications Cellular principles Lecture 17: » Cellular design Cellular - Principles » Elements of a cellular network » How does a mobile phone take place? Peter Steenkiste » Handoff » Frequency Allocation, Traffic Engineering Early cellular generations: 1G, 2G, 3G Spring Semester 2017 Today’s cellular: LTE http://www.cs.cmu.edu/~prs/wirelessS17/ Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc. Peter A. Steenkiste, CMU 1 Peter A. Steenkiste, CMU 2 The Advent of Cellular versus WiFi Cellular Networks Cellular WiFi Mobile radio telephone system was based on: Licensed Unlicensed » Predecessor of today’s cellular systems Spectrum » High power transmitter/receivers Provisioned Unprovisioned » Could support about 25 channels Service model » in a radius of 80 Km “for pay” “free” – no SLA To increase network capacity: » Multiple lower power transmitters (100W or less) MAC services Fixed bandwidth Best effort » Smaller transmission radius -> area split in cells SLAs no SLAs » Each cell with its own frequencies and base station » Adjacent cells use different frequencies Implications for level of service (SLAs), cost, » The same frequency can be reused at sufficient distance nature of protocols, …? These trends are continuing … Peter A. Steenkiste, CMU 3 Peter A. Steenkiste, CMU 4 Page 1 The Cellular Idea The MTS network http://www.privateline.com/PCS/images/SaintLouis2.gif In December 1947 Donald H. Ring outlined the idea in a Bell labs memo Split an area into cells, each with their own low power towers Each cell would use its own frequency Did not take off due to “extreme-at-the-time” processing needs » Handoff for thousands of users » Rapid switching infeasible – maintain call while changing frequency » Technology not ready Peter A.
    [Show full text]
  • Federal Communications Commission FCC 00-361 Before The
    Federal Communications Commission FCC 00-361 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Automatic and Manual Roaming Obligations ) Pertaining to ) WT Docket No. 00-193 Commercial Mobile Radio Services ) ) ) ) ) NOTICE OF PROPOSED RULEMAKING Adopted: October 4, 2000 Released: November 1, 2000 Comment Date: January 5, 2001 Reply Date: February 5, 2001 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION 1 II. BACKGROUND 2 A. Roaming 2 B. Current Requirements 5 C. Current State of Marketplace 8 III. NOTICE OF PROPOSED RULEMAKING 14 A. Automatic Roaming 17 B. Manual Roaming 30 C. Sunset of Roaming Rule(s) 32 IV. PROCEDURAL MATTERS 33 A. Regulatory Flexibility Act 33 B. Ex Parte Rules 34 C. Filing Procedures 35 D. Further Information 40 V. ORDERING CLAUSES 41 Appendix – Initial Regulatory Flexibility Analysis Federal Communications Commission FCC 00-361 I. INTRODUCTION 1. In this notice of proposed rulemaking (NPRM), we initiate a new proceeding to consider whether the Commission should adopt an “automatic” roaming rule that would apply to Commercial Mobile Radio Service (CMRS) systems and whether we should sunset the “manual” roaming requirement that currently applies to those systems.1 We recently terminated our previous consideration of these roaming issues under CC Docket No. 94-54, a long-standing proceeding.2 In light of the significant growth and development during the last few years of CMRS services provided by cellular, broadband Personal Communications Service (PCS), and Specialized Mobile Radio (SMR) systems, and given recent advancements in CMRS technologies, we believe that a new docket dedicated solely to roaming issues best ensures that we will have up-to-date, pertinent information as we consider whether, given the state of today’s marketplace, there is a need for a regulatory regime for roaming services.
    [Show full text]
  • 5G – Introduction & Future of Mobile Broadband
    International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.3, Issue 4, Oct 2013, 119-124 © TJPRC Pvt. Ltd., 5G – INTRODUCTION & FUTURE OF MOBILE BROADBAND COMMUNICATION REDEFINED R. GOWRI SHANKAR RAO & RAVALI SAI Vel Tech Dr. RR & Dr. SR Technical University, Department of Electronics and Communication Engineering, Avadi, Chennai, Tamil Nadu, India ABSTRACT 5G stands for 5th Generation Mobile Technology. It has changed the means to use cell phones within very high bandwidth. The 5G technology has extraordinary data capabilities and has ability to tie together unrestricted call volumes and infinite data broadcast within latest mobile operating system. The 5G technologies include all type of advanced features which makes 5G mobile technology most powerful and in huge demand in near future. The integration of 3G and 4G has brought new application and brings the choice of hosting new services. 5G technology includes camera, MP3 recording, video player, large phone memory, dialing speed, audio player and much more have been explored. The Router and switch technology used in 5G network providing high connectivity. This paper introduces the technology and explain the difference between 4G and 5G techniques such as increased maximum throughput; for example lower battery consumption, lower outage probability (better coverage), high bit rates in larger portions of the coverage area, cheaper or no traffic fees due to low infrastructure deployment costs, or higher aggregate capacity for many simultaneous users. KEYWORDS: Bandwidth, Router, Bit Rate, 5G, Operating System INTRODUCTION This 5G technology and its predecessors are going to give tough competition to laptops and normal computers whose market will be affected.
    [Show full text]