Osmohnbgw User Manual I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Running a Basic Osmocom GSM Network
Running a basic Osmocom GSM network Harald Welte <[email protected]> What this talk is about Implementing GSM/GPRS network elements as FOSS Applied Protocol Archaeology Doing all of that on top of Linux (in userspace) Running your own Internet-style network use off-the-shelf hardware (x86, Ethernet card) use any random Linux distribution configure Linux kernel TCP/IP network stack enjoy fancy features like netfilter/iproute2/tc use apache/lighttpd/nginx on the server use Firefox/chromium/konqueor/lynx on the client do whatever modification/optimization on any part of the stack Running your own GSM network Until 2009 the situation looked like this: go to Ericsson/Huawei/ZTE/Nokia/Alcatel/… spend lots of time convincing them that you’re an eligible customer spend a six-digit figure for even the most basic full network end up with black boxes you can neither study nor improve WTF? I’ve grown up with FOSS and the Internet. I know a better world. Why no cellular FOSS? both cellular (2G/3G/4G) and TCP/IP/HTTP protocol specs are publicly available for decades. Can you believe it? Internet protocol stacks have lots of FOSS implementations cellular protocol stacks have no FOSS implementations for the first almost 20 years of their existence? it’s the classic conflict classic circuit-switched telco vs. the BBS community ITU-T/OSI/ISO vs. Arpanet and TCP/IP Enter Osmocom In 2008, some people (most present in this room) started to write FOSS for GSM to boldly go where no FOSS hacker has gone before where protocol stacks are deep and acronyms are -
Openairinterface: Democratizing Innovation in the 5G Era
Computer Networks 176 (2020) 107284 Contents lists available at ScienceDirect Computer Networks journal homepage: www.elsevier.com/locate/comnet OpenAirInterface: Democratizing innovation in the 5G Era Florian Kaltenberger a,∗, Aloizio P. Silva b,c, Abhimanyu Gosain b, Luhan Wang d, Tien-Thinh Nguyen a a Eurecom, France b Northeastern University, Massachusetts, United States c US Ignite Inc. PAWR Project Office, Washington DC, United States d Beijing University of Posts and Telecommunications, Beijing, China a r t i c l e i n f o a b s t r a c t 2019 MSC: OpenAirInterface TM (OAI) is an open-source project that implements the 3rd Generation Partnership Project 00-01 (3GPP) technology on general purpose x86 computing hardware and Off-The-Shelf (COTS) Software Defined 99-00, Radio (SDR) cards like the Universal Software Radio Peripheral (USRP). It makes it possible to deploy and operate Keywords: a 4G Long-Term Evolution (LTE) network today and 5G New Radio (NR) networks in the future at a very low Open Air Interface cost. Moreover, the open-source code can be adapted to different use cases and deployment and new functionality 5G can be implemented, making it an ideal platform for both industrial and academic research. The OAI Software New radio technology Alliance (OSA) is a non-profit consortium fostering a community of industrial as well as research contributors. Network softwarization It also developed the OAI public license which is an open source license that allows contributors to implement LTE their own patented technology without having to relinquish their intellectual property rights. -
Etsi Tr 121 905 V11.2.0 (2012-10)
ETSI TR 121 905 V11.2.0 (2012-10) Technical Report Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Vocabulary for 3GPP Specifications (3GPP TR 21.905 version 11.2.0 Release 11) 3GPP TR 21.905 version 11.2.0 Release 11 1 ETSI TR 121 905 V11.2.0 (2012-10) Reference RTR/TSGS-0021905vb20 Keywords GSM,LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Osmobsc VTY Reference I
OsmoBSC VTY Reference i OsmoBSC VTY Reference OsmoBSC VTY Reference ii Copyright © 2012-2019 This work is copyright by sysmocom - s.f.m.c. GmbH. All rights reserved. OsmoBSC VTY Reference iii COLLABORATORS TITLE : OsmoBSC VTY Reference ACTION NAME DATE SIGNATURE WRITTEN BY September 28, 2021 REVISION HISTORY NUMBER DATE DESCRIPTION NAME v1 13th August 2012 Initial hf v2 5th March 2014 Update to match osmo-bsc version 0.13.0-305 hf v3 6th June 2019 Update to match osmo-bsc version 1.4.0.84-3f1f dw OsmoBSC VTY Reference iv Contents 1 VTY reference 1 1.1 Common Commands . .1 1.1.1 end . .2 1.1.2 exit . .2 1.1.3 help . .2 1.1.4 list [with-flags] . .2 1.1.5 show running-config . .3 1.1.6 show vty-attributes . .3 1.1.7 show vty-attributes (application|library|global) . .3 1.1.8 write . .4 1.1.9 write file [PATH] . .4 1.1.10 write memory . .4 1.1.11 write terminal . .4 1.2 view..........................................................5 1.2.1 enable [expert-mode] . .5 1.2.2 logging color (0|1) . .5 1.2.3 logging disable . .5 1.2.4 logging enable . .6 1.2.5 logging filter all (0|1) . .6 1.2.6 logging filter imsi IMSI . .6 1.2.7 logging level (rll|mm|rr|rsl|nm|pag|meas|msc|ho|hodec|ref|ctrl|filter|pcu|lcls|c... .7 1.2.8 logging level force-all (debug|info|notice|error|fatal) . 10 1.2.9 logging level set-all (debug|info|notice|error|fatal) . -
UMTS); Radio Interface Protocol Architecture (3GPP TS 25.301 Version 3.8.0 Release 1999)
ETSI TS 125 301 V3.8.0 (2001-06) Technical Specification Universal Mobile Telecommunications System (UMTS); Radio Interface Protocol Architecture (3GPP TS 25.301 version 3.8.0 Release 1999) 3GPP TS 25.301 version 3.8.0 Release 1999 1 ETSI TS 125 301 V3.8.0 (2001-06) Reference RTS/TSGR-0225301UR5 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/ If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2001. -
Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link
NASA/CR—2014-216675 Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link Steven C. Bretmersky MTI Systems, Inc., Cleveland, Ohio William D. Bishop Verizon Federal Network Systems, LLC., Arlington, Virginia Justin E. Dailey MTI Systems, Inc., Cleveland, Ohio Christine T. Chevalier Vantage Partners, LLC, Brook Park, Ohio June 2014 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. -
TR 101 865 V1.1.1 (2001-07) Technical Report
ETSI TR 101 865 V1.1.1 (2001-07) Technical Report Satellite Earth Stations and Systems (SES); Satellite component of UMTS/IMT-2000; General aspects and principles 2 ETSI TR 101 865 V1.1.1 (2001-07) Reference DTR/SES-00054 Keywords satellite, UMTS, IMT-2000, 3GPP ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/ If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2001. All rights reserved. ETSI 3 ETSI TR 101 -
E3 - Gsgsn 121 3
US008279831 B2 (12) United States Patent (10) Patent No.: US 8.279,831 B2 Sengupta et al. (45) Date of Patent: Oct. 2, 2012 (54) SYSTEM, METHOD, AND 2005/0159.153 A1 7/2005 Mousseau et al. COMPUTER-READABLE MEDIUM FOR 2005/02491.61 A1 11/2005 Carlton 2006, OO25151 A1 2/2006 Karaoguz et al. SELECTING ANETWORK FOR 2007/0014281 A1 1/2007 Kant ............................. 370,352 CONNECTIVITY AND HANDOVER BASED 2007/0032239 A1 2/2007 Shaheen et al. ON APPLICATION REQUIREMENTS 2007/0115899 A1 5/2007 Ovadia et al. 2007/0173283 A1* 7, 2007 Livet et al. ................. 455,552.1 (75) Inventors: Chaitali Sengupta, Richardson, TX (US); Yuan Kang Lee, San Diego, CA FOREIGN PATENT DOCUMENTS (US) WO WO O2, 19736 A2 3, 2002 WO WO 2004/100452 A1 11, 2004 (73) Assignee: SNRLab Corporation, Richardson, TX W. W. 3988, A: (39. OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 PCT International Preliminary Examining Authority—European U.S.C. 154(b) by 1059 days Patent Office, PCT Notification of Transmittal of the International M YW- Preliminary Report on Patentability mailed Feb. 6, 2009, Interna (21) Appl. No.: 11/929,066 tional Application No. PCT/US2007/083129, filed Oct. 31, 2007, 11 pages, NL-2280 HV Rijswijk. 1-1. 3GPP SA WG2, 3rd Generation Partnership Project: Technical (22) Filed: Oct. 30, 2007 Specification Group Services and Architecture; Feasibility Study on O O Multimedia Session Continuity; Stage 2: (Release 8), 3GPP TR (65) Prior Publication Data 23.893 (Oct. 2007), 3GPP Technical Recommendation, Oct. -
Method of Handling Non-Access Stratum Message and Related Communication Device
(19) TZZ Z_T (11) EP 2 704 456 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 05.03.2014 Bulletin 2014/10 H04W 4/00 (2009.01) H04W 76/02 (2009.01) (21) Application number: 13181635.7 (22) Date of filing: 25.08.2013 (84) Designated Contracting States: (71) Applicant: HTC Corporation AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Taoyuan County 330 (TW) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: Liao, Ching-Yu Designated Extension States: 330 Taoyuan City (TW) BA ME (74) Representative: Konkonen, Tomi-Matti Juhani (30) Priority: 29.08.2012 US 201261694276 P Murgitroyd & Company 22.08.2013 US 201313974005 Scotland House 165-169 Scotland Street Glasgow G5 8PL (GB) (54) Method of Handling Non-Access Stratum Message and Related Communication Device (57) Amethod ofhandling non- accessstratum (NAS) level to a network in the wireless communication system, mobility management (MM) messages for a user equip- and storing a priority indicator indicating the first priority ment in a wireless communication system when the user level in a nonvolatile memory if the user equipment re- equipment is configured for dual priority includes sending ceives a NAS MM reject message with a mobility man- a first NAS MM request message containing a first priority agement back-off (MMBK) timer from the network. EP 2 704 456 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 704 456 A1 2 Description the clear of the PPF, the core network cannot page the UE during the period of the implicit detach timer. -
3G UMTS Femtocell
3G UMTS Femtocell BRKAGG-2002 Presentation_ID © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Introduction to Femtocell Market Drivers Femtocell Architecture Key Femto Features Standards Update Femto Integration ummary BRKAGG-2002_c1 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 2 Introduction to Femtocell BRKAGG-2002_c1 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 3 In-Home Picocell Microcell Macrocell Focus of this topic is Femtocell In-house coverage Compare and contrast with Macrocell, Microcell or Picocell Femto provides in fill for Macro, Micro and Pico BRKAGG-2002_c1 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 4 What Is a Femtocell? Tiny 3G Home Access Point Gives 3G signal inside the home Operator Very low RF power. Management & Licensed Services Spectrum Standalone or integrated into Node-B home gateway. Cellular Network Standard 3G Works with all standard Handset Wireless Core handsets. (MSC, SGSN) Connects to the Core Network Femto Home Uses home broadband Security Node-B Gateway Licensed Gateway connection for backhaul Spectrum (contrast: Dedicated backhaul Internet Femto Home Requires Wireless Security Broadband Node-B Residential GW Connection Gateway for protection (<5mW) (4 calls in 200kbps) Standard Connectivity to Core Femto Cellular Network Connectivity from Femto network to Core similar to Macro network BRKAGG-2002_c1 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 5 Market Drivers BRKAGG-2002_c1 © 2009 Cisco Systems, Inc. -
Exploiting Broadcast Information in Cellular Networks
Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks Nico Golde, Kévin Redon, and Jean-Pierre Seifert, Technische Universität Berlin and Deutsche Telekom Innovation Laboratories This paper is included in the Proceedings of the 22nd USENIX Security Symposium. August 14–16, 2013 • Washington, D.C., USA ISBN 978-1-931971-03-4 Open access to the Proceedings of the 22nd USENIX Security Symposium is sponsored by USENIX Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks Nico Golde, K´evin Redon, Jean-Pierre Seifert Technische Universitat¨ Berlin and Deutsche Telekom Innovation Laboratories {nico, kredon, jpseifert}@sec.t-labs.tu-berlin.de Abstract comBB [20, 25, 45]. These open source projects consti- tute the long sought and yet publicly available counter- Mobile telecommunication has become an important part parts of the previously closed radio stacks. Although all of our daily lives. Yet, industry standards such as GSM of them are still constrained to 2G network handling, re- often exclude scenarios with active attackers. Devices cent research provides open source software to tamper participating in communication are seen as trusted and with certain 3G base stations [24]. Needless to say that non-malicious. By implementing our own baseband those projects initiated a whole new class of so far uncon- firmware based on OsmocomBB, we violate this trust sidered and practical security investigations within the and are able to evaluate the impact of a rogue device with cellular communication research, [28, 30, 34]. regard to the usage of broadcast information. Through our analysis we show two new attacks based on the pag- Despite the recent roll-out of 4G networks, GSM re- ing procedure used in cellular networks. -
Scaling Community Cellular Networks
Scaling Community Cellular Networks with CommunityCellularManager Shaddi Hasan, UC Berkeley; Mary Claire Barela, University of the Philippines, Diliman; Matthew Johnson, University of Washington; Eric Brewer, UC Berkeley; Kurtis Heimerl, University of Washington https://www.usenix.org/conference/nsdi19/presentation/hasan This paper is included in the Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’19). February 26–28, 2019 • Boston, MA, USA ISBN 978-1-931971-49-2 Open access to the Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’19) is sponsored by Scaling Community Cellular Networks with CommunityCellularManager Shaddi Hasan Mary Claire Barela Matthew Johnson UC Berkeley University of the Philippines, Diliman University of Washington Eric Brewer Kurtis Heimerl UC Berkeley University of Washington Hundreds of millions of people still live beyond the cov- tion infrastructure, to provide commercial mobile service. erage of basic mobile connectivity, primarily in rural ar- In spite of their size, incumbent mobile network operators eas with low population density. Mobile network opera- (MNOs) are capital constrained and struggle to justify in- tors (MNOs) traditionally struggle to justify expansion into vestment in rural areas with marginal business cases when these rural areas due to the high infrastructure costs neces- compared to more profitable and lower-risk urban markets. sary to provide service. Community cellular networks, net- Community cellular networking provides one alternative works built “by and for” the people they serve, represent approach for bringing mobile connectivity to these under- an alternative model that, to an extent, bypasses these busi- served populations [2, 28].