Genetic Background: Understanding Its Importance in Mouse-Based Biomedical Research a Jackson Laboratory Resource Manual

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Background: Understanding Its Importance in Mouse-Based Biomedical Research a Jackson Laboratory Resource Manual Genetic Background: Understanding its importance in mouse-based biomedical research A Jackson Laboratory Resource Manual This resource manual highlights the importance of using genetically well-defined mice for biomedical research. It briefly describes the following: • The importance of genetic background • Resources for helping researchers choose the appropriate mouse model • Proper nomenclature to communicate the genetic makeup of mouse models • The Jackson Laboratory’s Genetic Quality Control and Genetic Stability programs Cover Photos Front cover, left: JAX® Mice strain C3H/HeJ (000659) Front cover, middle: Technician displaying holders with straws in the liquid nitrogen storage tank in our Cryopreservation Repository. Front cover, right: JAX® Mice strain C57BL/6J (000664) Table of Contents Introduction ........................................................................................................................ 1 Genetic Background Definition and Examples ............................................................................................ 2 Genetic Background Makes a Difference ................................................................. 2 The Influence of 129 Substrain Backgrounds on Targeted Mutations ................. 4 Consequences of Using Inappropriate Backgrounds .............................................. 4 Minimizing the Confounding Effects of Genetic Background .............................. 5 How Substrains Arise .................................................................................................. 5 Resources to Help You Choose Appropriate Models The Mouse Phenome Database .................................................................................. 6 The JAX® Mice Database ............................................................................................. 6 The JAX® Mice Catalog ............................................................................................... 6 JAX Technical Support ................................................................................................ 6 Correct Nomenclature ....................................................................................................... 7 How We Ensure Genetic Quality & Stability .................................................................. 8 Our Genetic Quality Control Program ..................................................................... 8 Our Genome Scanning Service .................................................................................. 9 Our Genetic Stability Program ................................................................................ 10 The Jackson Laboratory: Pioneer in Cryopreservation ........................................ 11 Do Your Part to Lessen the Impact of Genetic Drift ............................................. 12 References .......................................................................................................................... 13 Introduction The utility of the laboratory mouse as a research • Mouse biology databases, such as the Mouse model of human biology is increasing every year. Genome Informatics Database (MGI, Following are some of the reasons: www.informatics.jax.org), the JAX® Mice Database (jaxmice.jax.org), the Mouse SNP Database • The laboratory mouse is biologically similar to (mousesnp.roche.com), and the Mouse Phenome humans, is susceptible to many of the same diseases, Database (www.jax.org/phenome) are continually is easy to maintain, reproduces quickly, and is very being expanded and improved. amenable to genetic manipulation and analysis. • The number of available mouse models, including • The C57BL/6J strain was selected by the Mouse congenics, consomics, recombinant inbred strains, Genome Sequencing Initiative to be the first mouse spontaneous mutants, ENU-generated mutants, strain to be sequenced. targeted mutants, and transgenics, is increasing almost exponentially. • Fifteen JAX® Mice strains, including DBA/2J and C3H/HeJ have been resequenced by the National As the amount of mouse-based biomedical research Institute of Environmental Health Sciences increases, researchers must be more mindful than Resequencing Project (NIH News 2006). Dense ever of the genetic makeup of the models they use. If SNP maps of virtually the entire mouse genome for research is to be reliable and reproducible over time and these strains are available from the Mouse Phenome place, and, most importantly, if it is to have the greatest Database (www.jax.org/phenome). This information potential for improving human health, it must be facilitates comparative genomics among mouse conducted with mice of well-defined, stable, and clearly strains, humans, and other sequenced species. communicated genetic backgrounds. In the following pages, we discuss how these criteria can be met. The Jackson Laboratory 1 Genetic Background Definition and Examples You may occasionally see the following cautionary note on of the targeted mutant strains NOD.129S7(B6)-Rag1tm1Mom/J strain data sheets of some of our JAX® Mice models: (003729) and NOD.Cg-Rag1tm1Mom Prf1tm1Sdz/Sz (004848) is This strain is on a genetic background different from that NOD. However, the first strain carries a targeted mutation on which the allele was first characterized. It should be noted of the Rag1 gene, likely a few Rag1-linked alleles from that the phenotype could vary from that originally described. 129S7-derived ES cells, and possibly some B6 alleles from We will modify the strain description if necessary as published crosses in the strain’s breeding history. In contrast, the second results become available. strain is a congenic (Cg) with more than one donor strain We include this note because the variety of genetic in its breeding history. It carries targeted mutations of the backgrounds and the mutations characterized and published Rag1 and Prf1 genes and possibly some background alleles on them are continually increasing. As a result, researchers from those other strains. Similarly, the genetic background of must be more mindful than ever of the genetic backgrounds transgenic strains FVB/N-Tg(MMTVneu)202Mul/J (002376) of the mouse models they use. and FVB/N-Tg(MMTV-PyVT)634Mul/J (002374) is FVB/N. As applied to a mutant mouse strain, genetic background However, whereas the first strain carries an MMTVneu refers to its genetic makeup (all its alleles at all loci) except transgene, the second carries an MMTV-PyVT transgene. the mutated gene of interest and a very small amount of On the other hand, strains B6.129S7-Rag1tm1Mom/J (002216) other genetic material, generally from one or two other and NOD.129S7(B6)-Rag1tm1Mom/J (003729) each have the strains. As we shall see, that “other” genetic material can same targeted mutation of the Rag1 gene, but on different significantly influence a mutant strain’s phenotype. backgrounds: C57BL/6J (B6) and NOD. Correct strain nomenclature indicates what a mutant strain’s background is. For example, the genetic background Genetic Background Makes a Difference The technology for producing genetically engineered them unexplainable. Such modifier genes are the reason why mice has been substantially refined, resulting in an normal development and physiology often vary significantly ever-increasing number, variety, and availability of mutant among inbred strains. mouse models. Generally, alleles of interest (such as One of the first documented instances of the influence of spontaneous mutations, targeted mutations, transgenes, genetic background on gene expression was the discovery and congenic regions) are maintained on one to several that, on a B6 background, the diabetes (db) and obese (ob) backgrounds that are more vigorous, better characterized, mutations cause obesity and transient diabetes, but, on a more amenable to scientific experiments, reproduce better, C57BLKS/J (BKS) background, they cause obesity and overt display a phenotype better, or have some other advantages diabetes (Coleman and Hummel 1973; Coleman 1978). over other backgrounds. However, alleles are sometimes (Fig. 1, page 3). Since those results were published, genetic transferred to backgrounds that are not well characterized. background has been shown to influence the expression In any case, inattention to a mutant’s genetic background can of many other genes, including the following: seriously confound research results. Each strain has unique background alleles that may interact with and modify the • The multiple intestinal neoplasia mutation (Min) of expression of a mutation, transgene, or other genetic insert. the adenomatous polyposis coli (Apc) gene (ApcMin). The likelihood of such modifier genes having a confounding B6 mice heterozygous for the ApcMin mutation are very effect is especially high in an uncharacterized background susceptible to developing intestinal polyps. Offspring of or in a segregating or mixed background of unspecified these mice mated with AKR/J, MA/MyJ, or CAST mice origin. Even in a well-characterized strain, undiscovered are significantly less susceptible, indicating that the latter modifier genes may confound results, sometimes making three strains harbor strain-unique ApcMin modifier loci, The Jackson Laboratory 2 Genetic Background Genetic Background Makes a Difference (continued) named modifier of Min 1 (Mom1) (Moser et al. 1992; Many phenotypic differences among substrains can Dietrich et al. 1993). The AKR allele of Mom1 has been only be explained by the presence of as yet undiscovered shown to actually
Recommended publications
  • Mouse Models of Human Disease an Evolutionary Perspective Robert L
    170 commentary Evolution, Medicine, and Public Health [2016] pp. 170–176 doi:10.1093/emph/eow014 Mouse models of human disease An evolutionary perspective Robert L. Perlman* Department of Pediatrics, The University of Chicago, 5841 S. Maryland Ave, MC 5058, Chicago, IL 60637, USA *E-mail: [email protected] Received 31 December 2015; revised version accepted 12 April 2016 ABSTRACT The use of mice as model organisms to study human biology is predicated on the genetic and physio- logical similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. KEYWORDS: allometry; cancer; gene networks; life history; model organisms transgenic, knockout, and knockin mice, have If you have cancer and you are a mouse, we can provided added impetus and powerful tools for take good care of you. Judah Folkman [1] mouse research, and have led to a dramatic increase in the use of mice as model organisms.
    [Show full text]
  • MMRN1 Antibody (Monoclonal) (M02) Mouse Monoclonal Antibody Raised Against a Partial Recombinant MMRN1
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 MMRN1 Antibody (monoclonal) (M02) Mouse monoclonal antibody raised against a partial recombinant MMRN1. Catalog # AT2883a Specification MMRN1 Antibody (monoclonal) (M02) - Product Information Application WB, E Primary Accession Q13201 Other Accession NM_007351 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2b Kappa Calculated MW 138110 MMRN1 Antibody (monoclonal) (M02) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 22915 Immunogen (36.74 KDa) . Other Names Multimerin-1, EMILIN-4, Elastin microfibril interface located protein 4, Elastin microfibril interfacer 4, Endothelial cell multimerin, Platelet glycoprotein Ia*, 155 kDa platelet multimerin, p-155, p155, MMRN1, ECM, EMILIN4, GPIA*, MMRN Target/Specificity MMRN1 (NP_031377, 291 a.a. ~ 390 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Detection limit for recombinant GST tagged MMRN1 is approximately 0.1ng/ml as a Dilution capture antibody. WB~~1:500~1000 Format MMRN1 Antibody (monoclonal) (M02) - Clear, colorless solution in phosphate Background buffered saline, pH 7.2 . Multimerin is a massive, soluble protein found Storage in platelets and in the endothelium of blood Store at -20°C or lower. Aliquot to avoid vessels. It is comprised of subunits linked by repeated freezing and thawing. interchain disulfide bonds to form large, variably sized homomultimers. Multimerin is a Precautions factor V/Va-binding protein and may function MMRN1 Antibody (monoclonal) (M02) is for as a carrier protein for platelet factor V. It may research use only and not for use in also have functions as an extracellular matrix diagnostic or therapeutic procedures.
    [Show full text]
  • The EMILIN/Multimerin Family
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE REVIEW ARTICLE published: 06 Januaryprovided 2012 by Frontiers - Publisher Connector doi: 10.3389/fimmu.2011.00093 The EMILIN/multimerin family Alfonso Colombatti 1,2,3*, Paola Spessotto1, Roberto Doliana1, Maurizio Mongiat 1, Giorgio Maria Bressan4 and Gennaro Esposito2,3 1 Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, Aviano, Italy 2 Department of Biomedical Science and Technology, University of Udine, Udine, Italy 3 Microgravity, Ageing, Training, Immobility Excellence Center, University of Udine, Udine, Italy 4 Department of Histology Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy Edited by: Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Uday Kishore, Brunel University, UK Multimerin1, and Multimerin2) constitute a four member family that in addition to the Reviewed by: shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a Uday Kishore, Brunel University, UK Kenneth Reid, Green Templeton N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and College University of Oxford, UK assemble into high molecular weight multimers. They are predominantly expressed in *Correspondence: the extracellular matrix and contribute to several cellular functions in part associated with Alfonso Colombatti, Division of the gC1q domain and in part not yet assigned nor linked to other specific regions of the Experimental Oncology 2, Centro di sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacil- Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, lus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and 33081 Aviano, Italy.
    [Show full text]
  • Expression and Prognostic Role of IKBKE and TBK1 in Stage I Non-Small Cell Lung Cancer
    Cancer Management and Research Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Expression and prognostic role of IKBKE and TBK1 in stage I non-small cell lung cancer This article was published in the following Dove Press journal: Cancer Management and Research Xin Wang1,2 Background: The inhibitors of nuclear factor kappa-B kinase subunit epsilon (IKBKE) and Feifei Teng2 TANK-binding kinase 1 (TBK1) are important members of the nonclassical IKK family that Jie Lu3 share the kinase domain. They are important oncogenes for activation of several signaling Dianbin Mu4 pathways in several tumors. This study aims to explore the expression of IKBKE and TBK1 Jianbo Zhang4 and their prognostic role in stage I non-small cell lung cancer (NSCLC). Jinming Yu1,2 Patients and methods: A total of 142 surgically resected stage I NSCLC patients were enrolled and immunohistochemistry of IKBKE and TBK1 was performed. 1 Department of Oncology, Renmin Results: IKBKE and TBK1 were expressed in 121 (85.2%) and 114 (80.3%) of stage I Hospital of Wuhan University, Wuhan, fi Hubei 430060, People’s Republic of China; NSCLC patients respectively. IKBKE expression was signi cantly associated with TBK1 2Department of Radiation Oncology, expression (P=0.004). Furthermore, multivariate regression analyses showed there was a fi Shandong Cancer Hospital Af liated to significant relationship between patients with risk factors, the recurrence pattern of metas- Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong tasis and IKBKE+/TBK1+ co-expression (P=0.032 and P=0.022, respectively). In Kaplan– 250117, People’s Republic of China; Meier survival curve analyses, the IKBKE+/TBK1+ co-expression subgroup was signifi- 3Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong cantly associated with poor overall survival (P=0.014).
    [Show full text]
  • Laboratory Animal Management: Rodents
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/2119 SHARE Rodents (1996) DETAILS 180 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-04936-8 | DOI 10.17226/2119 CONTRIBUTORS GET THIS BOOK Committee on Rodents, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council FIND RELATED TITLES SUGGESTED CITATION National Research Council 1996. Rodents. Washington, DC: The National Academies Press. https://doi.org/10.17226/2119. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Rodents i Laboratory Animal Management Rodents Committee on Rodents Institute of Laboratory Animal Resources Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C.1996 Copyright National Academy of Sciences. All rights reserved. Rodents ii National Academy Press 2101 Constitution Avenue, N.W. Washington, D.C. 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • Workflows for Rapid Functional Annotation of Diverse
    insects Article Workflows for Rapid Functional Annotation of Diverse Arthropod Genomes Surya Saha 1,2 , Amanda M. Cooksey 2,3, Anna K. Childers 4 , Monica F. Poelchau 5 and Fiona M. McCarthy 2,* 1 Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; [email protected] 2 School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA; [email protected] 3 CyVerse, BioScience Research Laboratories, University of Arizona, 1230 N. Cherry Ave., Tucson, AZ 85721, USA 4 Bee Research Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] 5 National Agricultural Library, Agricultural Research Service, USDA, 10301 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] * Correspondence: fi[email protected] Simple Summary: Genomic technologies are accumulating information about genes faster than ever before, and sequencing initiatives, such as the Earth BioGenome Project, i5k, and Ag100Pest Initiative, are expected to increase this rate of acquisition. However, if genomic sequencing is to be used for the improvement of human health, agriculture, and our understanding of biological systems, it is necessary to identify genes and understand how they contribute to biological outcomes. While there are several well-established workflows for assembling genomic sequences and identifying genes, understanding gene function is essential to create actionable knowledge. Moreover, this functional annotation process must be easily accessible and provide information at a genomic scale to keep up Citation: Saha, S.; Cooksey, A.M.; with new sequence data. We report a well-defined workflow for rapid functional annotation of whole Childers, A.K.; Poelchau, M.F.; proteomes to produce Gene Ontology and pathways information.
    [Show full text]
  • Molecular Basis of Tank-Binding Kinase 1 Activation by Transautophosphorylation
    Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation Xiaolei Maa,1, Elizabeth Helgasonb,1, Qui T. Phungc, Clifford L. Quanb, Rekha S. Iyera, Michelle W. Leec, Krista K. Bowmana, Melissa A. Starovasnika, and Erin C. Dueberb,2 Departments of aStructural Biology, bEarly Discovery Biochemistry, and cProtein Chemistry, Genentech, South San Francisco, CA 94080 Edited by Tony Hunter, Salk Institute for Biological Studies, La Jolla, CA, and approved April 25, 2012 (received for review December 30, 2011) Tank-binding kinase (TBK)1 plays a central role in innate immunity: it the C-terminal scaffolding/dimerization domain (SDD), a do- serves as an integrator of multiple signals induced by receptor- main arrangement that appears to be shared among the IKK mediated pathogen detection and as a modulator of IFN levels. family of kinases (3). Deletion or mutation of the ULD in TBK1 Efforts to better understand the biology of this key immunological or IKKε severely impairs kinase activation and substrate phos- factor have intensified recently as growing evidence implicates phorylation in cells (22, 23). Furthermore, the integrity of the aberrant TBK1 activity in a variety of autoimmune diseases and ULD in IKKβ is not only required for kinase activity (24) but was fi cancers. Nevertheless, key molecular details of TBK1 regulation and shown also to confer substrate speci city in conjunction with the β substrate selection remain unanswered. Here, structures of phos- adjacent SDD (25). Recent crystal structures of the IKK phorylated and unphosphorylated human TBK1 kinase and ubiq- homodimer demonstrate that the ULD and SDD form a joint, uitin-like domains, combined with biochemical studies, indicate three-way interface with the KD within each protomer of the a molecular mechanism of activation via transautophosphorylation.
    [Show full text]
  • A Haplotype Map for the Laboratory Mouse
    NEWS AND VIEWS Sample size dictates inference dogma collection, rather than to data generation or ent experimental approaches provides insight The technical revolution that made the cur- analysis. The open question is whether the com- into mechanism and helps specify the genetic rent data boom possible has matured; genetics munity of funding agencies, peer reviewers and model. In fact, genomic convergence is a spe- laboratories now routinely generate millions of regulatory bodies will be prepared to encourage cific embodiment of the concept of ‘consilience genotypes per day. However, more data can be a and support the assembly of subjects and mate- of inductions’, formulated by William Whewell problem when we do not have the discipline to rials needed to accomplish these goals. in the 1840s11, which says that valid inductions apply the scientific method. Replication is also will be supported by data from many different a problem when working with effects so small Candidate gene success experimental approaches. that replication success could not be reasonably Rather than being discovered initially through a Although they benefit greatly from the expected, even if the marker is associated with genome-wide scan of hundreds of thousands of impressive acceleration provided by genome- the disease. genetic markers, which is now the rage, IL7R is wide scans, virtually all genetic association Larger sample size is the mantra of the hour. a candidate gene that refused to quit. Certainly, disease studies ultimately become candidate Experimentalists and funding agencies no longer the first paper on IL7R polymorphisms in mul- gene projects. Additional susceptibility genes in scoff at theoretical analyses showing that thou- tiple sclerosis7 would not have satisfied the strin- multiple sclerosis—siblings of HLA-DRB2, IL7R sands of cases and controls are needed to dem- gent replication criteria advocated by a recent and, probably, IL2RA4—might now stand above onstrate modest genetic associations (Fig.
    [Show full text]
  • Enrichment for Laboratory Zebrafish—A Review of the Evidence and the Challenges
    animals Review Enrichment for Laboratory Zebrafish—A Review of the Evidence and the Challenges Chloe H. Stevens *, Barney T. Reed and Penny Hawkins Animals in Science Department, RSPCA, Wilberforce Way, Southwater, West Sussex RH13 9RS, UK; [email protected] (B.T.R.); [email protected] (P.H.) * Correspondence: [email protected] Simple Summary: The zebrafish is one of the most commonly used animals in scientific research, but there remains a lack of consensus over good practice for zebrafish housing and care. One such area which lacks agreement is whether laboratory zebrafish should be provided with environmental enrichment—additions or modifications to the basic laboratory environment which aim to improve welfare, such as plastic plants in tanks. The need for the provision of appropriate environmental enrichment has been recognised in other laboratory animal species, but some scientists and animal care staff are hesitant to provide enrichment for zebrafish, arguing that there is little or no evidence that enrichment can benefit zebrafish welfare. This review aims to summarise the current literature on the effects of enrichment on zebrafish physiology, behaviour and welfare, and identifies some forms of enrichment which are likely to benefit zebrafish. It also considers the possible challenges that might be associated with introducing more enrichment, and how these might be addressed. Abstract: Good practice for the housing and care of laboratory zebrafish Danio rerio is an increasingly discussed topic, with focus on appropriate water quality parameters, stocking densities, feeding Citation: Stevens, C.H.; Reed, B.T.; regimes, anaesthesia and analgesia practices, methods of humane killing, and more.
    [Show full text]
  • Downloaded As a CSV Dump file
    cells Article Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis Nicolas Buisine 1,† , Alexis Grimaldi 1,†, Vincent Jonchere 1,† , Muriel Rigolet 1, Corinne Blugeon 2 , Juliette Hamroune 2 and Laurent Marc Sachs 1,* 1 UMR7221 Molecular Physiology and Adaption, CNRS, Museum National d’Histoire Naturelle, 57 Rue Cuvier, CEDEX 05, 75231 Paris, France; [email protected] (N.B.); [email protected] (A.G.); [email protected] (V.J.); [email protected] (M.R.) 2 Genomics Core Facility, Département de Biologie, Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] (C.B.); [email protected] (J.H.) * Correspondence: [email protected] † Co-first authors, alphabetic order. Abstract: Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were Citation: Buisine, N.; Grimaldi, A.; modeled by system biology. Results: We found that gene expression is mostly regulated by either Jonchere, V.; Rigolet, M.; Blugeon, C.; T or CORT, or their additive effect when they both regulate the same genes. A small but non- Hamroune, J.; Sachs, L.M.
    [Show full text]
  • Mechanisms of IKBKE Activation in Cancer Sridevi Challa University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 1-29-2017 Mechanisms of IKBKE Activation in Cancer Sridevi Challa University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Biochemistry Commons, Biology Commons, and the Cell Biology Commons Scholar Commons Citation Challa, Sridevi, "Mechanisms of IKBKE Activation in Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6617 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Mechanisms of IKBKE Activation in Cancer by Sridevi Challa A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology, and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Mokenge P. Malafa, M.D. Gary Reuther, Ph.D. Eric Lau, Ph.D. Domenico Coppola, M.D. Date of Approval: January 12, 2017 Keywords: EGFR, Olaparib, resistance Copyright © 2017, Sridevi Challa DEDICATION This dissertation is dedicated to my kind and courageous mother. ACKNOWLEDGMENTS I would like to acknowledge Dr. Cheng for trusting me with completion of the projects. I would like to thank him for giving me the freedom to explore any aspect of research and always willing to provide the necessary resources and guidance for my projects. I want to also acknowledge Ted and the Cheng lab personnel for their support.
    [Show full text]
  • Genetic Analysis of Complex Traits in the Emerging Collaborative Cross
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Research Genetic analysis of complex traits in the emerging Collaborative Cross David L. Aylor,1 William Valdar,1,13 Wendy Foulds-Mathes,1,13 Ryan J. Buus,1,13 Ricardo A. Verdugo,2,13 Ralph S. Baric,3,4 Martin T. Ferris,1 Jeff A. Frelinger,4 Mark Heise,1 Matt B. Frieman,4 Lisa E. Gralinski,4 Timothy A. Bell,1 John D. Didion,1 Kunjie Hua,1 Derrick L. Nehrenberg,1 Christine L. Powell,1 Jill Steigerwalt,5 Yuying Xie,1 Samir N.P. Kelada,6 Francis S. Collins,6 Ivana V. Yang,7 David A. Schwartz,7 Lisa A. Branstetter,8 Elissa J. Chesler,2 Darla R. Miller,1 Jason Spence,1 Eric Yi Liu,9 Leonard McMillan,9 Abhishek Sarkar,9 Jeremy Wang,9 Wei Wang,9 Qi Zhang,9 Karl W. Broman,10 Ron Korstanje,2 Caroline Durrant,11 Richard Mott,11 Fuad A. Iraqi,12 Daniel Pomp,1,14 David Threadgill,5,14 Fernando Pardo-Manuel de Villena,1,14 and Gary A. Churchill2,14 1Department of Genetics, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 2The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 3Department of Epidemiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 4Department of Microbiology and Immunology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 5Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA; 6Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
    [Show full text]