SPARTAN V.2.6 User's Manual

Total Page:16

File Type:pdf, Size:1020Kb

SPARTAN V.2.6 User's Manual SPARTAN 2.6 User's Manual M´arioLino da Silva, Bruno Lopez, and Susana Espinho May 5, 2016 Contents Introduction1 1 Getting Started3 1.1 Launching the SPARTAN code...................4 1.1.1 Running the Graphical User Interface (GUI) of the SPAR- TAN code...........................4 1.1.2 How the Graphical User Interface works..........6 1.1.3 Other user-defined parameters...............6 1.1.4 Running the SPARTAN code without the Graphical User Interface............................6 1.2 Recorded data............................6 1.3 Sample comparisons.........................7 1.4 Stepping a little further.......................7 2 Physical Models9 2.1 Discrete radiation models......................9 2.1.1 Selection rules........................9 2.1.2 Line positions and intensities................ 13 2.1.3 Broadening mechanisms................... 20 2.2 Continuum radiation models.................... 23 2.2.1 Transition intensities..................... 24 2.2.2 Special cases......................... 25 2.3 Generalized Kirchhoff–Planck Law for radiative transfer..... 26 2.3.1 Discrete transitions...................... 26 2.3.2 Photoionization transitions................. 26 2.3.3 Photodissociation transitions................ 27 2.3.4 Bremsstrahlung transitions................. 27 3 Detailed Description of the Code 29 3.1 Introduction.............................. 29 3.2 Summary of the capabilities of the SPARTAN code........ 31 3.3 Units used in the SPARTAN code................. 32 3.4 Core routines............................. 32 3.5 The Lineshape calculation routine................. 34 3.5.1 Calculation of a Voigt lineshape.............. 38 3.5.2 Handling and Overlay of Individual Lineshapes...... 42 4 Modifying the Code Spectral Database 45 4.1 Introduction.............................. 45 4.2 Building spectral datafiles for diatomic transitions........ 46 4.2.1 Guidelines for the selection of appropriated spectral con- stants............................. 46 4.2.2 Step-by-step instructions.................. 50 4.2.3 Special case for Homonuclear/Fermion transitions.... 55 4.2.4 Testing your files....................... 55 4.3 Datafiles for diatomic species partition functions calculations.. 56 4.3.1 Approximations considered in the population routine... 57 4.3.2 File structure......................... 58 4.4 Building spectral datafiles for other transitions.......... 59 4.4.1 Atomic discrete and continuum transitions........ 59 4.4.2 Linear polyatomic discrete transitions........... 60 4.4.3 Molecular continuum transitions.............. 62 4.5 Linking new spectral datafiles to the SPARTAN database.... 63 4.6 Summary............................... 66 A References for the SPARTAN Spectral Database 67 B H¨onl{LondonFactors 71 B.1 Applied approximations....................... 72 B.1.1 Neglecting line spin-splitting effects for satellite lines in- volving Σ states....................... 72 B.1.2 Neglecting weaker rotational branches........... 72 B.2 First Rotational Lines intensities.................. 74 B.3 Intermediary a{b case H¨onl-LondonFactors............ 74 C Potential Energies and Wavefunctions Reconstruction 81 C.1 Theory................................. 81 C.1.1 Recalculating potentials for an arbitrary rotational exci- tation............................. 83 C.1.2 Expressions for Radiative transition probabilities..... 84 C.1.3 Numerical Routines Description............... 85 D Other Auxiliary Routines 87 Bibliography 88 E Code Versions Log 95 E.1 Next Version updates........................ 95 E.2 Code Regressions........................... 95 E.3 Code Run Times........................... 97 F Selected Published Works 99 Introduction The SPARTAN code (Simulation of PlasmARadiation in ThermodynAmic Nonequilibrium) is a line-by-line numerical code which calculates the spectral- dependent emission and absorption coefficients of a gas which can be either in thermodynamic equilibrium or not. In it's present version, the code is writ- ten in the MATLAB language. A FORTRAN version of the code is in the works. The numerical code has been initially focused for the simulation of low- pressure, high-temperature plasma applications in aerospace applications (sim- ulation of planetary atmospheric entry radiation). However, the code can and has been applied to a variety of different applications, as for example the simu- lation of radiation from atmospheric and low-pressure plasma sources. Last but not least, the code can be applied to the simulation of atmospheric opacities, the simulation of radiation from combustion processes, or even other applications. The code can be operated in two different fashions: coupled to a fluid dynamics code, which calculates the local macroscopic • properties of the flow, and handles them to the SPARTAN code. The SPARTAN code is in turn coupled to a radiative transfer code, which accounts for the calculated spectral dependent emission and absorption coefficients of the gas, and calculates radiative transfer. stand-alone for the simulation of the local spectral properties of gases and • plasmas, or for the comparison with experimentally determined spectra, providing information on the species temperatures/energy levels distribu- tion functions. The second standalone application is by far the most common one, and this program manual is primarily intended at providing support with the setup of such kind of simulations. This manual is divided in four Chapters: Chapter1 gives a quick overview on how to quickly start using the code • for calculating spectra, using the supplied database of the code. Chapter2 describes the physical models available in the code. • 2 Chapter3 provides a more detailed description of the numerical algorithms • inserted in the code. Chapter4 provides an in-depth description of the file structure of the • SPARTAN spectral database, and explains how the database can be cus- tomized by the user. AppendixA references the spectral database of the SPARTAN code (ex- • cept for Bound Diatomic transitions). AppendixB presents the expressions for the H¨onl{Londonfactors that • have been inserted in the code. AppendixC describes the companion RKR_SCH routine that can be used • for the calculation of the full set of rovibronic states for a specific elec- tronic configuration of a diatomic molecule, and the calculation of Einstein coefficients for bound diatomic transitions. AppendixD describes the other auxiliary routines of the SPARTAN code. • Copyright Notice The SPARTAN code is distributed under the terms of the GNU Lesser Public License (LGPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later versions. The LGPL license allows utilizing the SPARTAN code linked to closed-source/proprietary codes. This program is distributed to the scientific and general community in the hope that it will be useful, but without any warranty. Community involvement in the development of the SPARTAN code itself, or its associated database, is an important endeavor for the developers and main- tainers of the code. As such, we would be grateful if you would be willing to take back a little of your time and share with us any improvements of the code and/or its spectral database so that they can be further distributed among the community of SPARTAN code users. This is something that sometimes tends to be overlooked by the academic community, as much as it can avoid spurious duplication of efforts by different research teams. As such, any sort of feedback would be welcomed by the team, who also man- ages an online repository of spectral data (the GASPAR database, available at http://esther.ist.utl.pt/gaspar). If you wish to have any spectroscopic data added to this ever growing open-access repository (with nearly 1,000 dif- ferent sets of data), feel free to contact us. The latest version of the SPARTAN code is maintained at the following address: http://esther.ist.utl.pt/spartan. Chapter 1 Getting Started This Chapter describes how the SPARTAN code can be quickly used by first-time users, relying on the provided spectroscopic database and using the default line calculation settings. 4 Getting Started 1.1 Launching the SPARTAN code Upon starting MATLAB, the user should select the SPARTAN code direc- tory as a working directory. Then, in the line command, one can type one of the two following instructions to start the SPARTAN code: >> SPARTAN or >> SPARTAN_noGUI The first command launches the graphical user interface (GUI) of the code, whereas the second command launches the application directly, without using the GUI. 1.1.1 Running the Graphical User Interface (GUI) of the SPARTAN code This section will focus on the SPARTAN GUI, which provides a useful in- terface allowing the main calculation parameters to bet set and calculations to be launched without major efforts. Upon launching the application, the GUI window is opened (see Fig. 1.1). Figure 1.1: Graphical User Interface of the SPARTAN Code The interface provides the following items which can be defined by the user: 1.1 Launching the SPARTAN code 5 1. Apparatus function: Here, the user can define a Gaussian apparatus function of a given FWHM in A˚ for the simulation of experimentally mea- sured spectra. this FWHM is added to the calculated Voigt FWHM. Setting this option to 0 reproduces the \physical" spectra, for given local conditions. 2. Rotational temperature: The user defines here the rotational temper- ature for the overall species1. For the calculation of broadening mecha- nisms, the species translational temperature
Recommended publications
  • Arxiv:1710.00259V1 [Physics.Chem-Ph] 30 Sep 2017 a Relativistically Correct Electron Interaction
    One-step treatment of spin-orbit coupling and electron correlation in large active spaces Bastien Mussard1, ∗ and Sandeep Sharma1, y 1Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA In this work we demonstrate that the heat bath configuration interaction (HCI) and its semis- tochastic extension can be used to treat relativistic effects and electron correlation on an equal footing in large active spaces to calculate the low energy spectrum of several systems including halogens group atoms (F, Cl, Br, I), coinage atoms (Cu, Au) and the Neptunyl(VI) dioxide radical. This work demonstrates that despite a significant increase in the size of the Hilbert space due to spin symmetry breaking by the spin-orbit coupling terms, HCI retains the ability to discard large parts of the low importance Hilbert space to deliver converged absolute and relative energies. For instance, by using just over 107 determinants we get converged excitation energies for Au atom in an active space containing (150o,25e) which has over 1030 determinants. We also investigate the accuracy of five different two-component relativistic Hamiltonians in which different levels of ap- proximations are made in deriving the one-electron and two-electrons Hamiltonians, ranging from Breit-Pauli (BP) to various flavors of exact two-component (X2C) theory. The relative accuracy of the different Hamiltonians are compared on systems that range in atomic number from first row atoms to actinides. I. INTRODUCTION can become large and it is more appropriate to treat them on an equal footing with the spin-free terms and electron Relativistic effects play an important role in a correlation.
    [Show full text]
  • Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C
    Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C. All rights reserved. Schrödinger, FirstDiscovery, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Prime, QSite, and QikProp are trademarks of Schrödinger, L.L.C. MacroModel is a registered trademark of Schrödinger, L.L.C. To the maximum extent permitted by applicable law, this publication is provided “as is” without warranty of any kind. This publication may contain trademarks of other companies. October 2003 Contents Chapter 1: Introduction.......................................................................................1 1.1 Conventions Used in This Manual.......................................................................2 1.2 Citing Jaguar in Publications ...............................................................................3 Chapter 2: The Maestro Graphical User Interface...........................................5 2.1 Starting Maestro...................................................................................................5 2.2 The Maestro Main Window .................................................................................7 2.3 Maestro Projects ..................................................................................................7 2.4 Building a Structure.............................................................................................9 2.5 Atom Selection ..................................................................................................10 2.6 Toolbar Controls ................................................................................................11
    [Show full text]
  • CHEM:4480 Introduction to Molecular Modeling
    CHEM:4480:001 Introduction to Molecular Modeling Fall 2018 Instructor Dr. Sara E. Mason Office: W339 CB, Phone: (319) 335-2761, Email: [email protected] Lecture 11:00 AM - 12:15 PM, Tuesday/Thursday. Primary Location: W228 CB. Please note that we will often meet in one of the Chemistry Computer Labs. Notice about class being held outside of the primary location will be posted to the course ICON site by 24 hours prior to the start of class. Office Tuesday 12:30-2 PM (EXCEPT for DoC faculty meeting days 9/4, 10/2, 10/9, 11/6, Hour and 12/4), Thursday 12:30-2, or by appointment Department Dr. James Gloer DEO Administrative Office: E331 CB Administrative Phone: (319) 335-1350 Administrative Email: [email protected] Text Instead of a course text, assigned readings will be given throughout the semester in forms such as journal articles or library reserves. Website http://icon.uiowa.edu Course To develop practical skills associated with chemical modeling based on quantum me- Objectives chanics and computational chemistry such as working with shell commands, math- ematical software, and modeling packages. We will also work to develop a basic understanding of quantum mechanics, approximate methods, and electronic struc- ture. Technical computing, pseudopotential generation, density functional theory software, (along with other optional packages) will be used hands-on to gain experi- ence in data manipulation and modeling. We will use both a traditional classroom setting and hands-on learning in computer labs to achieve course goals. Course Topics • Introduction: It’s a quantum world! • Dirac notation and matrix mechanics (a.k.a.
    [Show full text]
  • US DOE SC ASCR FY11 Software Effectiveness SC GG 3.1/2.5.2 Improve Computational Science Capabilities
    US DOE SC ASCR FY11 Software Effectiveness SC GG 3.1/2.5.2 Improve Computational Science Capabilities K. J. Roche High Performance Computing Group, Pacific Northwest National Laboratory Nuclear Theory Group, Department of Physics, University of Washington Presentation to ASCAC, Washington, D.C. , November 2, 2011 Tuesday, November 1, 2011 1 LAMMPS Paul Crozier, Steve Plimpton, Mark Brown, Christian Trott OMEN, NEMO 5 Gerhard Klimeck, Mathieu Luisier, Sebastian Steiger, Michael Povolotskyi, Hong-Hyun Park, Tillman Kubis OSIRIS Warren Mori, Ricardo Fonseca, Asher Davidson, Frank Tsung, Jorge Vieira, Frederico Fiuza, Panagiotis Spentzouris eSTOMP Steve Yabusaki, Yilin Fang, Bruce Palmer, Manojkumar Krishnan Rebecca Hartman-Baker Ricky Kendall Don Maxwell Bronson Messer Vira j Paropkari David Skinner Jack Wells Cary Whitney Rice HPC Toolkit group DOE ASCR, OLCF and NERSC staf Tuesday, November 1, 2011 2 • Metric Statement, Processing • FY11 Applications Intro Problems Enhancements Results • FY12 Nominations Tuesday, November 1, 2011 3 US OMB PART DOE SC ASCR Annual Goal with Quarterly Updates (SC GG 3.1/2.5.2) Improve computational science capabilities, defined as the average annual percentage increase in the computational effectiveness (either by simulating the same problem in less time or simulating a larger problem in the same time) of a subset of application codes. To those ‘on the clock’ with this work, it means more than just satisfying the language of this metric. Tuesday, November 1, 2011 4 accept • COMPLEXITY LP LR PROBLEMS M M M • reject • ALGORITHMS • MACHINES Measured time for machine M to generate the language of the problem plus time to generate the language of the result plus the time to accept or reject the language of the result.
    [Show full text]
  • Efficient Two-Component Relativistic Method to Obtain Electronic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Waseda University Efficient Two-Component Relativistic Method to Obtain Electronic and Molecular Structures of Heavy-Element Systems ͷిࢠঢ়ଶ͓Αͼ෼ࢠߏ଄ͷͨΊͷܥॏݩૉ ޮ཰తͳ 2 ੒෼૬ର࿦๏ February 2017 Waseda University Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry, Research on Electronic State Theory Yuya NAKAJIMA தౢɹ༟໵ Contents Chapter 1 General introduction 1 References . ................................ 6 Chapter 2 Theoretical background 7 2.1 Dirac Hamiltonian . ....................... 7 2.2 The IODKH method ....................... 9 2.3 The LUT scheme . ........................ 12 2.4 Spin-free and spin-dependent formalisms . ......... 14 2.5 The FCP method . ........................ 16 2.6 The GHF method . ........................ 19 2.7 The Analytical energy derivative for the GHF method . 21 References . ................................ 24 Chapter 3 Analytical energy gradient for spin-free infinite-order Douglas–Kroll–Hess method with local unitary transfor- mation 25 3.1 Introduction . .......................... 25 3.2 Theory and implementation . ................. 27 3.2.1 Energy gradient for IODKH . ........... 27 3.2.2 Analytical derivative for the space transformation matrices . ......................... 30 3.2.3 Energy gradient for LUT-IODKH . .......... 32 3.2.4 Implementation . ................... 33 i 3.3 Numerical assessments . .................. 34 3.3.1 Computational details . ................ 34 3.3.2 Numerical gradient values ............... 37 3.3.3 Accuracies of IODKH/C and LUT-IODKH/C methods 38 3.3.4 Computational cost of the LUT scheme ........ 45 3.3.5 Metal complexes . ................... 47 3.3.6 Heavier analogues of ethylene . ........... 48 3.3.7 Harmonic frequencies of diatomic molecules . 49 3.4 Conclusion .
    [Show full text]
  • The Electron Affinity of the Uranium Atom
    The electron affinity of the uranium atom Cite as: J. Chem. Phys. 154, 224307 (2021); https://doi.org/10.1063/5.0046315 Submitted: 02 February 2021 . Accepted: 18 May 2021 . Published Online: 10 June 2021 Sandra M. Ciborowski, Gaoxiang Liu, Moritz Blankenhorn, Rachel M. Harris, Mary A. Marshall, Zhaoguo Zhu, Kit H. Bowen, and Kirk A. Peterson ARTICLES YOU MAY BE INTERESTED IN Ultrahigh sensitive transient absorption spectrometer Review of Scientific Instruments 92, 053002 (2021); https://doi.org/10.1063/5.0048115 A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant Review of Scientific Instruments 92, 053202 (2021); https://doi.org/10.1063/5.0040701 How accurate is the determination of equilibrium structures for van der Waals complexes? The dimer N2O⋯CO as an example The Journal of Chemical Physics 154, 194302 (2021); https://doi.org/10.1063/5.0048603 J. Chem. Phys. 154, 224307 (2021); https://doi.org/10.1063/5.0046315 154, 224307 © 2021 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp The electron affinity of the uranium atom Cite as: J. Chem. Phys. 154, 224307 (2021); doi: 10.1063/5.0046315 Submitted: 2 February 2021 • Accepted: 18 May 2021 • Published Online: 10 June 2021 Sandra M. Ciborowski,1 Gaoxiang Liu,1 Moritz Blankenhorn,1 Rachel M. Harris,1 Mary A. Marshall,1 Zhaoguo Zhu,1 Kit H. Bowen,1,a) and Kirk A. Peterson2,a) AFFILIATIONS 1 Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA 2 Department of Chemistry, Washington State University, Pullman, Washington 99162, USA a)Authors to whom correspondence should be addressed: [email protected] and [email protected] ABSTRACT The results of a combined experimental and computational study of the uranium atom are presented with the aim of determining its electron affinity.
    [Show full text]
  • Nwchem User Documentation Release 4.0.1
    NWChem User Documentation Release 4.0.1 High Performance Computational Chemistry Group W.R. Wiley Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory P.O. Box 999, Richland, WA 99352 January 2001 2 DISCLAIMER This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPON- SIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARA- TUS, PRODUCT, SOFTWARE, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS. LIMITED USE This software (including any documentation) is being made available to you for your internal use only, solely for use in performance of work directly for the U.S. Federal Government or work under contracts with the U.S. Department of Energy or other U.S. Federal Government agencies. This software is a version which has not yet been evaluated and cleared for commercialization. Adherence to this notice may be necessary for the author, Battelle Memorial Institute, to successfully assert copyright in and commercialize this software. This software is not intended for duplication or distribution to third parties without the permission of the Manager of Software Products at Pacific Northwest National Laboratory, Richland, Washington, 99352. ACKNOWLEDGMENT This software and its documentation were produced with Government support under Contract Number DE-AC06- 76RLO-1830 awarded by the United States Department of Energy. The Government retains a paid-up non-exclusive, irrevocable worldwide license to reproduce, prepare derivative works, perform publicly and display publicly by or for the Government, including the right to distribute to other Government contractors.
    [Show full text]
  • Scale QM/MM-MD Simulations and Its Application to Biomolecular Systems
    PUPIL: a Software Integration System for Multi- scale QM/MM-MD Simulations and its Application to Biomolecular Systems Juan Torras, 1 * B.P. Roberts, 2 G.M. Seabra, 3and S.B. Trickey 4 * 1Department of Chemical Engineering, EEI, Universitat Politècnica de Catalunya, Av. Pla de la Massa 8, Igualada 08700, Spain 2 Centre for eResearch, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand 3Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco CEP 50.740-540, Brazil 4Department of Physics, Department of Chemistry, and Quantum Theory Project, Univ. of Florida, Gainesville Florida 32611-8435, USA * Corresponding Authors: [email protected] and [email protected] 1 Abstract PUPIL (Program for User Package Interfacing and Linking) implements a distinctive multi-scale approach to hybrid quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations. Originally developed to interface different external programs for multi-scale simulation with applications in the materials sciences, PUPIL is finding increasing use in the study of complex biological systems. Advanced MD techniques from the external packages can be applied readily to a hybrid QM/MM treatment in which the forces and energy for the QM region can be computed by any of the QM methods available in any of the other external packages. Here we give a survey of PUPIL design philosophy, main features, and key implementation decisions, with an orientation to biomolecular simulation. We discuss recently implemented features which enable highly realistic simulations of complex biological systems which have more than one active site that must be treated concurrently.
    [Show full text]
  • GPW and GAPW
    Zurich, July 12th 2017 CP2K : GPW and GAPW Marcella Iannuzzi Department of Chemistry, University of Zurich http://www.cp2k.org Basis Set Representation KS matrix formulation when the wavefunction is expanded into a basis System size {Nel, M}, P [MxM], C [MxN] ⇥i(r)= Cαiφα(r) α Variational n(r)= fiCαiC⇥iφα(r)φ⇥(r)= P⇥φα(r)φ⇥(r) principle i ⇥ ⇥ Constrained minimisation P = PSP problem KS total energy E[ ψ ]=T [ ψ ]+Eext[n]+EH[n]+EXC[n]+EII { i} { i} Matrix formulation of the KS equations H xc K(C)C = T(C)+Vext(C)+E (C)+E (C)=SCε 2 Self-consistency SCF Method Generate a starting density ⇒ ninit Input 3D Coordinates init Generate the KS potential ⇒ VKS of atomic nuclei Solve the KS equations ⇒ , ψ � Initial Guess Molecular Orbitals Fock Matrix (1-electron vectors) Calculation 1 Calculate the new density ⇒ n 1 New KS potential ⇒ VKS Fock Matrix Diagonalization New orbitals and energies ⇒ �1 , ψ Calculate 2 Properties Yes SCF No New density ⇒ n Converged? End ….. until self-consistency 3to required precision Classes of Basis Sets Extended basis sets, PW : condensed matter Localised basis sets centred at atomic positions, GTO Idea of GPW: auxiliary basis set to represent the density Mixed (GTO+PW) to take best of two worlds, GPW Augmented basis set, GAPW: separated hard and soft density domains 4 GPW Ingredients linear scaling KS matrix computation for GTO Gaussian basis sets (many terms analytic) 2 mx my mz ↵mr ⇥i(r)= Cαiφα(r) φ↵(r)= dm↵gm(r) gm(r)=x y z e− α m X Pseudo potentials Plane waves auxiliary basis for Coulomb integrals Regular grids and FFT for the density Sparse matrices (KS and P) Efficient screening G.
    [Show full text]
  • Lecture 2: Standard Software and Visualization Tools
    The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. P. A. M. Dirac, 1929. Lecture 2: standard software and visualization tools A brief overview of simulation and visualization software in current use Dr Ilya Kuprov, University of Southampton, 2012 (for all lecture notes and video records see http://spindynamics.org) Expert level packages: Gaussian Notable Pro Notable Contra Excellent internal coordinate module supporting very Very expensive, carries severe sophisticated scans, constraints and licensing restrictions. energy surface analysis. Does not scale to more than 4 Excellent solvation and reaction (CISD) to 32 (DFT) cores, even on field support. shared memory systems. Very user-friendly, clear and A real pain to install. forgiving input syntax. Gaussian is not the most %Mem=16GB CPU-efficient package in exis- %NProcShared=8 #p opt=tight rb3lyp/cc-pVDZ scf=(tight,dsymm) tence, but it takes much less integral=(grid=ultrafine) time to set up a Gaussian job than a job for any other Flavin anion geometry optimization expert level package. -1 1 N.B.: CPU time is £0.06 an C 0.00000000 0.00000000 0.00000000 hour, brain time is £25+ an C 0.00000000 0.00000000 1.41658511 C 1.23106864 0.00000000 2.09037416 hour. C 2.43468421 0.00000000 1.39394037 http://www.gaussian.com/g_prod/g09_glance.htm Expert level packages: GAMESS Notable Pro Notable Contra Three distinct code branches (UK, US, PC) with Excellent configuration interaction module.
    [Show full text]
  • Relativistic Coupled Cluster Theory - in Molecular Properties and in Electronic Structure Avijit Shee
    Relativistic coupled cluster theory - in molecular properties and in electronic structure Avijit Shee To cite this version: Avijit Shee. Relativistic coupled cluster theory - in molecular properties and in electronic structure. Mechanics of materials [physics.class-ph]. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30053. tel-01515345 HAL Id: tel-01515345 https://tel.archives-ouvertes.fr/tel-01515345 Submitted on 27 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS Avijit Shee le 26th January, 2016 5JUSF Relativistic Coupled Cluster Theory – in Molecular Properties and in Electronic Structure ²DPMF EPDUPSBMF et discipline ou spécialité ED SDM : Physique de la matière - CO090 6OJUÏEFSFDIFSDIF Laboratoire de Chimie et Physique Quantiques (UMR5626) %JSFDUFVSUSJDF T EFʾÒTF Trond Saue (Directeur) Timo Fleig (Co-Directeur) Jury : Trygve Helgaker Professeur Rapporteur Jürgen Gauss Professeur Rapporteur Valerie Vallet Directeur de Recherche Examinateur Laurent Maron Professeur Rapporteur Timo Fleig Professeur Directeur Trond Saue Directeur de Recherche Directeur A Thesis submitted for the degree of Doctor of Philosophy Relativistic Coupled Cluster Theory { in Molecular Properties and in Electronic Structure Avijit Shee Universit´eToulouse III { Paul Sabatier Contents Acknowledgements iii 1.
    [Show full text]
  • GAMESS-UK USER's GUIDE and REFERENCE MANUAL Version 8.0
    CONTENTS i Computing for Science (CFS) Ltd., CCLRC Daresbury Laboratory. Generalised Atomic and Molecular Electronic Structure System GAMESS-UK USER'S GUIDE and REFERENCE MANUAL Version 8.0 June 2008 PART 4. DATA INPUT - CLASS 2 Directives M.F. Guest, H.J.J. van Dam, J. Kendrick, J.H. van Lenthe, P. Sherwood and G. D. Fletcher Copyright (c) 1993-2008 Computing for Science Ltd. This document may be freely reproduced provided that it is reproduced unaltered and in its entirety. Contents 1 Introduction1 2 RUNTYPE1 2.1 Notes on RUNTYPE Specification........................ 2 3 SCFTYPE5 4 Directives defining the wavefunction6 4.1 SCF Wavefunctions: The OPEN Directive.................... 6 4.2 GVB Wavefunctions................................ 10 4.3 CASSCF wavefunctions: The CONFIG Directive................. 12 CONTENTS ii 5 Directives Controlling Wavefunction Convergence 16 5.1 MAXCYC..................................... 16 5.2 THRESHOLD................................... 16 6 SCF Convergence - Default 17 6.1 LEVEL....................................... 17 6.1.1 Closed-shell RHF Calculations...................... 17 6.1.2 Open-shell RHF and GVB Calculations.................. 18 6.1.3 Open-shell UHF Calculations....................... 19 6.2 Core-Hole States.................................. 20 6.3 DIIS........................................ 21 6.4 CONV....................................... 23 6.5 AVERAGE..................................... 23 6.6 SMEAR...................................... 24 6.7 CASSCF Convergence..............................
    [Show full text]