Allosteric Gating of Son of Sevenless Activity by the Histone Domain

Total Page:16

File Type:pdf, Size:1020Kb

Allosteric Gating of Son of Sevenless Activity by the Histone Domain Allosteric gating of Son of sevenless activity by the histone domain Kamlesh K Yadava and Dafna Bar-Sagia,b,1 aCell and Molecular Biology Program and bDepartment of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016 Communicated by John Kuriyan, University of California, Berkeley, CA, December 13, 2009 (received for review October 7, 2009) Regulated activation of Ras by receptor tyrosine kinases (RTK) Results and Discussion constitutes a key transduction step in signaling processes that con- The Histone Domain Displays Lipid-Dependent Membrane Binding trol an array of fundamental cellular functions including prolifer- Activity. An initial unbiased screen for potential interactions be- ation, differentiation, and survival. The principle mechanism by tween Sos-H and phospholipids indicated preferential binding to which Ras is activated down stream of RTKs involves the stimula- phosphatidic acid (PA) (Fig. S1A). To validate this observation, tion of guanine nucleotide exchange by the ubiquitous guanine we used a lipid vesicle-sedimentation assay in which the partition- nucleotide exchange factor Son of sevenless (Sos). In resting con- ing of purified Sos-H between the vesicle-containing pellet ditions, Sos activity is constrained by intramolecular interactions (bound) and the supernatant (free) is assessed post ultracentri- that maintain the protein in an autoinhibited conformation. Struc- fugation. As illustrated in Fig. 1B, Sos-H bound to PA-containing tural, biochemical, and genetic studies have implicated the histone vesicles in a concentration-dependent manner, with detectable domain (Sos-H), which comprises the most N-terminal region binding observed at a concentration of 0.01 mM PA. In contrast, of Sos, in the regulation of Sos autoinhibition. However, the mo- no binding was observed to vesicles composed of phosphatidyl- lecular underpinnings of this regulatory function are not well choline only or to vesicles containing phosphatidylserine, another understood. In the present study we demonstrate that Sos-H pos- acidic phospholipid (Fig. S1B). Consistent with the observation of sesses in vitro and in vivo membrane binding activity that is Gureasko et al. (9), Sos-H also bound to PIP2-containing vesicles mediated, in part, by the interactions between a cluster of basic (Fig. S1B). Because the binding of Sos-H to PA was significantly residues and phosphatidic acid. This interaction is required for higher relative to PIP2 binding, we have focused our analysis on BIOCHEMISTRY Sos-dependent activation of Ras following EGF stimulation. The in- the Sos-H/PA interactions. The modulation of Sos function by in- ducible association of Sos-H with membranes contributes to the teractions with membrane components other than PA, i.e. PIP2, is catalytic activity of Sos by forcing the domain to adopt a conforma- the subject of the accompanying study by Gureasko et al (9). tion that destabilizes the autoinhibitory state. Thus, Sos-H plays a Whether or not these interactions play a redundant or comple- critical role in governing the catalytic output of Sos through the mentary role with that of PA remains to be determined. coupling of membrane recruitment to the release of autoinhibition. The solvent exposed surface of Sos-H contains three promi- ∣ ∣ ∣ nent basic patches surrounding a negatively charged E108 residue Ras guanine nucleotide exchange factor Noonan syndrome (Fig. 1C, Left). Significantly, all of these patches and E108 are phosphatidic acid conserved across Sos sequences (Fig. S1D). To assess the indivi- dual contribution of these patches to PA-binding, lysine and as proteins are essential transducers of signals that originate arginine residues within each patch were mutated. As illustrated Rat the cell surface following the ligand-dependent stimulation in Fig. 1C Right , each set of mutations compromised PA-binding. of receptor tyrosine kinases (RTK). The activation of Ras by RTK However, the Sos-H mutant in which AEA residues were proceeds through the inducible conversion of Ras-GDP to substituted for 97RKR99 (Sos-HRKR∕AEA) displayed the most pro- Ras-GTP by the multidomain guanine nucleotide exchange factor nounced reduction in binding activity indicating that this basic Son of sevenless (Sos) (Fig. 1A). Structural and biochemical stu- cluster serves as a major PA-binding determinant. To substantiate dies have assigned specific functions to the different domains of this conclusion, the binding affinities of PA for Sos-H and Sos in regulating guanine nucleotide exchange on Ras. The cat- Sos-HRKR∕AEA were measured. Sos-H bound to PA-containing alytic region consisting of the Rem and Cdc25 domains harbors vesicles with a Kd of 0.2 μM, nearly 600 times stronger than PC- two Ras-binding sites, one for Ras-GDP and the other for Ras- containing vesicles (Kd ¼ 110 μM) (Fig. 1D). By comparison, the GTP (1). The Ras-GDP binding site (also referred to as the cat- ∕ binding of Sos-HRKR AEA to PA-containing vesicles was 200-fold alytic site) mediates nucleotide dissociation, and the Ras-GTP ∕ weaker (Kd ¼ 40 μM). Of note, the binding of Sos-HRKR AEA to binding site (also referred to as the allosteric site) promotes PIP2 was not altered relative to Sos-H suggesting that PA and the release of Sos from an inactive autoinhibited state imposed PIP2 interact at distinct sites (Fig. S1C). by the intramolecular interaction between the DH domain and To test whether PA-binding could play a role in the membrane the Rem segment of the catalytic domain (Fig. 1A). The allosteric association of Sos-H in vivo, GFP-fusion constructs of Sos-H and site has also been implicated in the membrane recruitment of Sos Sos-HRKR∕AEA were transiently transfected into COS-1 cells and along with the proline-rich C-terminal region and the PH domain their subcellular distribution analyzed by fluorescence micro- (2–4). The N-terminus of Sos (residues 1–198) contains a seg- ment with sequence and structural similarity to histones and ac- scopy. In unstimulated cells, Sos-H displayed a basal level of cordingly has been termed the histone domain (Sos-H) (5). The membrane localization plausibly due to charge-mediated binding only known function ascribed to date to this domain is in the to membrane phospholipids (Fig. 1E). The extent of this con- maintenance of the autoinhibited conformation of Sos through stitutive membrane association was dependent on the levels of the in cis binding to a helical linker that connects the DH-PH module of Sos to the catalytic domain (3, 6–8) (Fig. 1A). Analysis Author contributions: K.K.Y. and D.B.-S. designed research; K.K.Y. performed research and of the surface electrostatic potential of Sos-H revealed positively analyzed data; and K.K.Y. and D.B.-S.wrote the paper. charged regions and it has been proposed that these regions may The authors declare no conflict of interest. mediate the association with negatively charged membrane com- 1To whom correspondence should be addressed. E-mail: [email protected]. ponents (7). In the present study we have sought to determine the This article contains supporting information online at www.pnas.org/cgi/content/full/ existence and significance of Sos-H membrane interactions. 0914315107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0914315107 PNAS Early Edition ∣ 1of5 Downloaded by guest on September 23, 2021 Fig. 1. The histone domain of Sos (Sos-H) binds to membrane lipids. (A) The domain arrangement of Sos. H, Histone; DH, Dbl homology; PH, Pleckstrin homology; L, helical Linker; REM, Ras exchange motif; CDC25, yeast CDC25 homology; and PxxP, proline-rich region. Below, a cartoon depiction of the relative orientation of the various domains of Sos in the autoinhibited state. The red bars indicate intramolecular interactions. The blue dotted line circle indicates the binding site for allosteric Ras, which is occluded by the DH domain. (B) His-tagged Sos-H (0.5 μM) was mixed with the indicated concentrations of lipid vesicles comprised PC∶PA (90∶10). Vesicles were pelleted and the amount of Sos-H in the pellet (Bound) or in the supernatant (Free) was detected by immunoblotting (IB). (C) Surface electrostatic potential map (blue, positive; red, negative) showing the 3 basic patches in Sos-H and the residues mutated (see Materials and Methods). Right, Sos-H constructs containing the indicated mutations were mixed with 1 mM PC∶PA vesicles (90∶10) and binding was determined as in B.(D) Increasing amounts of Sos-H were incubated with 1 mM PC∶PA (closed circles) or PC lipid vesicles (open triangles) and Sos-HRKR∕AEA with PC∶PA vesicles (closed triangles). Kd was determined as previously described (2). Data presented in panels B–D are representative of three independent experiments. (E) COS-1 cells were transfected with GFP-tagged Sos-H and membrane localization scored in either starved cells or upon incubation with PA (100 μM) for 20 min. The image represents a single slice of 0.25 μm from a serial Z-section of the cell. The boxed areas are enlarged in the left and right adjacent images with arrowheads showing the relative increase in fluorescence intensity at the membrane. Results (bar graph) are mean Æs:d: of three independent experiments with at least 100 expressing cells counted for each condition (see Materials and Methods). Scale bar: 10 μm. ectopically expressed constructs making it difficult to assess its RNA interference was used to knock-down PLD2. Suppression of physiological relevance. The addition of membrane-permeable PLD2 expression impaired the ability of Sos-H to translocate to PA to serum-deprived cells stimulated the translocation of Sos-H, the plasma membrane in response to EGF stimulation (Fig. S2). but not Sos-HRKR∕AEA, from the cytoplasm to the membrane as Together, these data indicate that the affinity of Sos-H to the evident by a rim of fluorescence at the cell periphery (Fig.
Recommended publications
  • Adaptive Stress Signaling in Targeted Cancer Therapy Resistance
    Oncogene (2015) 34, 5599–5606 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Adaptive stress signaling in targeted cancer therapy resistance E Pazarentzos1,2 and TG Bivona1,2 The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. Although substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumo r cell survival during treatment and the development of resistance. Here we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize
    [Show full text]
  • Mutation Analysis of Son of Sevenless in Juvenile Myelomonocytic Leukemia
    Letters to the Editor 1108 3 Licht JD. Reconstructing a disease: what essential features of the the development of acute promyelocytic leukemia in transgenic retinoic acid receptor fusion oncoproteins generate acute promye- mice. Proc Natl Acad Sci USA 2000; 97: 13306–13311. locytic leukemia? Cancer Cell 2006; 9: 73–74. 10 Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, 4 Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. Silletto A et al. Forced retinoic acid receptor alpha homodimers A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 prime mice for APL-like leukemia. Cancer Cell 2006; 9: 81–94. genes as a therapeutic target of imatinib in idiopathic hypereosino- 11 Kwok C, Zeisig BB, Dong S, So CW. Forced homo-oligomerization philic syndrome. N Engl J Med 2003; 348: 1201–1214. of RARalpha leads to transformation of primary hematopoietic 5 Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human cells. Cancer Cell 2006; 9: 95–108. Fip1 is a subunit of CPSF that binds to U-rich RNA elements and 12 Palaniswamy V, Moraes KC, Wilusz CJ, Wilusz J. Nucleophosmin stimulates poly(A) polymerase. EMBO J 2004; 23: 616–626. is selectively deposited on mRNA during polyadenylation. Nat 6 Sainty D, Liso V, Cantu-Rajnoldi A, Head D, Mozziconacci MJ, Struct Mol Biol 2006; 13: 429–435. Arnoulet C et al. A new morphologic classification system for acute 13 Rego EM, Ruggero D, Tribioli C, Cattoretti G, Kogan S, Redner RL promyelocytic leukemia distinguishes cases with underlying PLZF/ et al.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Structural Analysis of Autoinhibition in the Ras-Specific Exchange Factor
    RESEARCH ARTICLE elife.elifesciences.org Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1 Jeffrey S Iwig1,2, Yvonne Vercoulen3†, Rahul Das1,2†, Tiago Barros1,2,4, Andre Limnander3, Yan Che1,2, Jeffrey G Pelton2, David E Wemmer2,5,6, Jeroen P Roose3*, John Kuriyan1,2,4,5,6* 1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 2California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; 3Department of Anatomy, University of California, San Francisco, San Francisco, United States; 4Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; 5Department of Chemistry, University of California, Berkeley, Berkeley, United States; 6Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States Abstract RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals.
    [Show full text]
  • Snapshot: Mtorc1 Signaling at the Lysosomal Surface Liron Bar-Peled and David M
    1390 Cell SnapShot: mTORC1 Signaling at the 151 , December 7,2012©2012 ElsevierInc. DOI http://dx.doi.org/10.1016/j.cell.2012.11.038 Lysosomal Surface Liron Bar-Peled and David M. Sabatini Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA Nutrient signaling Wnt Growth Leu signaling factor signaling TNF signaling Amino Gln Wnt Tyrosine acids Frizzled IGF kinase TNFD receptor TNF receptor DNA Energy levels O levels SLC1A5 SLC7A5 2 damage ATP/AMP PIP2 Pten Amino acid mTORC1 Dsh1 IRS1 transporter Gln (inactive) GRB2 SOS PI3K PIP3 Gln Redd1 p53 LKB1 GEF GSK3 activity Leu GTP Ras NF1 PDK1 GAP Sestrin Movement to the activity RagAGTP lysosomal surface Movement AMPK Raf GDP away from Rapamycin RagA the lysosomal surface FKBP12 Mek Erk1/2 Rsk1 Akt1 IKK` v-ATPase GEF activity CYTOPLASM RagAGTP mTORC1 Ragulator GTP GAP activity GDP TSC complex RagC (active) Rheb Tumor suppressor Oncogene mTORC1 substrate ? Growth DOWNSTREAM CELLULAR PROGRAMS REGULATED BY mTORC1 ACTIVITY See online version for legend and references. S6K1 Amino acids LYSOSOME Protein synthesis 4EBP1 COMPLEXES AT THE LYSOSOMAL SURFACE HIF1_ Energy metabolism A B A E E G G pras40 deptor Lysosome biogenesis A BB MP1 HBXIP TSC1 TBC1D7 TFEB p14 C7orf59 raptor H mLST8 Lipin-1 D C Lipid p18 biosynthesis a d F mTOR TSC2 SREBP1/2 c cc ATG13 FIP200 Autophagy Lysosomal v-ATPase Ragulator complex mTORC1 TSC complex ULK1 SnapShot: mTORC1 Signaling at the Lysosomal Surface Liron Bar-Peled and David M. Sabatini Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA In mammals, the mTOR complex 1 (mTORC1) ser/thr kinase regulates cellular and organismal growth in response to a variety of environmental and intracellular stimuli.
    [Show full text]
  • Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers Int Cells
    REVIEW ARTICLE published: 04 September 2013 doi: 10.3389/fimmu.2013.00239 Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers inT cells Jesse E. Jun1, Ignacio Rubio2 and Jeroen P.Roose 1* 1 Department of Anatomy, University of California San Francisco, San Francisco, CA, USA 2 Institute for Molecular Cell Biology, Center for Sepsis Control and Care (CSCC), University Hospital, Friedrich-Schiller-University, Jena, Germany Edited by: The Ras-MAPK signaling pathway is highly conserved throughout evolution and is acti- Karsten Sauer, The Scripps Research vated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange Institute, USA factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor- Reviewed by: Kjetil Taskén, University of Oslo, ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are Norway expressed: RasGRF,RasGRP,and Son of Sevenless (SOS)-family GEFs. Early on it was rec- Balbino Alarcon, Consejo Superior de ognized that Ras activation is critical for T cell development and that the RasGEFs play an Investigaciones Cientificas, Spain important role herein. More recent work has revealed that nuances in Ras activation appear *Correspondence: to significantly impactT cell development and selection.These nuances include distinct bio- Jeroen P.Roose, Department of Anatomy, University of California San chemical patterns of analog versus digital Ras activation, differences in cellular localization Francisco, 513 Parnassus Avenue, of Ras activation, and intricate interplays between the RasGEFs during distinctT cell devel- Room HSW-1326, San Francisco, CA opmental stages as revealed by various new mouse models.
    [Show full text]
  • Regulation of Son of Sevenless by the Membrane-Actin Linker Protein Ezrin
    Regulation of Son of sevenless by the membrane-actin linker protein ezrin Katja J. Geißlera, M. Juliane Junga, Lars Björn Rieckena, Tobias Sperkab,1, Yan Cuia, Stephan Schackea, Ulrike Merkela, Robby Markwartc, Ignacio Rubioc, Manuel E. Thand, Constanze Breithaupte, Sebastian Peukerf, Reinhard Seifertf, Ulrich Benjamin Kauppf, Peter Herrlichb, and Helen Morrisona,2 aH.M. Laboratory, bP.H. Laboratory, and dM.E.T. Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute, 07745 Jena, Germany; cResearch Group ANERGY, Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, 07747 Jena, Germany; eAbteilung Physikalische Biotechnologie, Martin Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; and fDepartment of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175 Bonn, Germany Edited by Michael Karin, University of California, San Diego School of Medicine, La Jolla, CA, and approved October 28, 2013 (received for review December 18, 2012) Receptor tyrosine kinases participate in several signaling path- comprises Ras, SOS, filamentous actin, and coreceptors such as ways through small G proteins such as Ras (rat sarcoma). An im- β1-integrin. Coreceptors focus these complexes to relevant sites of portant component in the activation of these G proteins is Son of RTK activity at the plasma membrane/F-actin interface. We de- sevenless (SOS), which catalyzes the nucleotide exchange on Ras. fined binding sites on ezrin for both Ras and SOS, mutations of For optimal activity, a second Ras molecule acts as an allosteric which destroy the interactions and inhibit the activation of Ras. activator by binding to a second Ras-binding site within SOS.
    [Show full text]
  • Understanding SOS (Son of Sevenless) Stéphane Pierre, Anne-Sophie Bats, Xavier Coumoul
    Understanding SOS (Son of Sevenless) Stéphane Pierre, Anne-Sophie Bats, Xavier Coumoul To cite this version: Stéphane Pierre, Anne-Sophie Bats, Xavier Coumoul. Understanding SOS (Son of Sevenless). Bio- chemical Pharmacology, Elsevier, 2011, 82 (9), pp.1049-1056. 10.1016/j.bcp.2011.07.072. hal- 02190799 HAL Id: hal-02190799 https://hal.archives-ouvertes.fr/hal-02190799 Submitted on 22 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Understanding SOS (Son of Sevenless). 1 1,2,‡ 1,2,3,‡ 1,2, † 2 Stéphane PIERRE , Anne-Sophie BATS , Xavier COUMOUL 3 4 5 1 6 INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des 7 Saints Pères, 75006 Paris France 8 9 10 2 Université Paris Descartes, Centre universitaire des Saints-Pères, 45 rue des Saints Pères, 11 12 75006 Paris France 13 14 3 15 AP-HP, Hôpital Européen Georges Pompidou, Service de Chirurgie Gynécologique 16 17 Cancérologique, 75015 Paris France 18 19 ‡ These authors contributed equally to this work. 20 21 † 22 Address correspondence to: Xavier Coumoul, INSERM UMR-S 747, 45 rue des Saints-Pères 23 24 75006 Paris France; Phone: +33 1 42 86 33 59; Fax: +33 1 42 86 38 68; E-mail: 25 26 [email protected] 27 28 29 30 31 Key words: Son of Sevenless.
    [Show full text]
  • The Sevenless Signaling Pathway: Variations of a Common Theme
    Biochimica et Biophysica Acta 1496 (2000) 151^163 www.elsevier.com/locate/bba Review The Sevenless signaling pathway: variations of a common theme Thomas Raabe * Department of Genetics, University of Wu«rzburg, Biozentrum, Am Hubland, D-97074 Wu«rzburg, Germany Received 26 November 1999; accepted 24 January 2000 Abstract Many developmental processes are regulated by intercellular signaling mechanisms that employ the activation of receptor tyrosine kinases. One model system that has been particular useful in determining the role of receptor tyrosine kinase- mediated signaling processes in cell fate determination is the developing Drosophila eye. The specification of the R7 photoreceptor cell in each ommatidium of the developing Drosophila eye is dependent on activation of the Sevenless receptor tyrosine kinase. This review will focus on the genetic and biochemical approaches that have identified signaling molecules acting downstream of the Sevenless receptor tyrosine kinase which ultimately trigger differentiation of the R7 photoreceptor cell. ß 2000 Elsevier Science B.V. All rights reserved. 1. Receptor tyrosine kinases in eye development: maining undi¡erentiated cells have undergone a last an overview round of mitosis, photoreceptors R1/R6, and ¢nally R7, are recruited. Addition of the nonneuronal cone Each of the 800 single eye units (ommatidia) of the and pigment cells completes ommatidial development Drosophila eye contains a stereotypic arrangement of [1]. Di¡erentiation of the di¡erent cell types in each eight photoreceptor cells (R1^R8), four lens secreting ommatidium is controlled by at least two receptor cone cells and a number of accessory cells (Fig. tyrosine kinases (RTKs), the Drosophila EGF recep- 1A,E).
    [Show full text]
  • The Interdependent Activation of Son-Of-Sevenless and Ras
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The Interdependent Activation of Son-of-Sevenless and Ras Pradeep Bandaru,1 Yasushi Kondo,1 and John Kuriyan2 1Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720 2Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720 Correspondence: [email protected] The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guano- sine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs. n evolutionary innovation in metazoans is 2007). Instead, SOS is recruited to the mem- Athe coupling of Ras activation to the phos- brane by tyrosine phosphorylation of receptors phorylation of tyrosine residues on cell-surface or scaffold proteins and, in addition, the activa- receptors.
    [Show full text]
  • NMR-Based Functional Profiling of Rasopathies and Oncogenic RAS
    NMR-based functional profiling of RASopathies and oncogenic RAS mutations Matthew J. Smitha, Benjamin G. Neela, and Mitsuhiko Ikuraa,b,1 aCampbell Family Cancer Research Institute, Ontario Cancer Institute, and bDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7 Edited by Peter E. Wright, The Scripps Research Institute, La Jolla, CA, and approved February 1, 2013 (received for review October 17, 2012) Defects in the RAS small G protein or its associated network of reg- K-RAS mutations is highly codon-dependent (11, 12). This finding ulatory proteins that disrupt GTPase cycling are a major cause of directly correlates underlying RAS biochemical defects with can- cancer and developmental RASopathy disorders. Lack of robust func- cer pathology, and a better appreciation of the intrinsic properties tional assays has been a major hurdle in RAS pathway-targeted drug of RAS and its surrounding regulatory network could facilitate the development. We used NMR to obtain detailed mechanistic data on design of specific, mechanism-based therapeutic approaches for RAS cycling defects conferred by oncogenic mutations, or full-length patients carrying these mutations. RASopathy-derived regulatory proteins. By monitoring the confor- RASopathies are a group of hereditary developmental syn- mation of wild-type and oncogenic RAS in real-time, we show that dromes triggered by germ-line mutations in genes encoding com- opposing properties integrate with regulators to hyperactivate on- ponents of the RAS/MAPK pathway (1, 13). Neurofibromatosis cogenic RAS mutants. Q61L and G13D exhibited rapid nucleotide type 1 (NF1), resulting from deficiency in the RASGAP neuro- exchange and an unexpected susceptibility to GAP-mediated hydro- fibromin (NF1) (14, 15), and Noonan Syndrome (NS), caused by lysis, in direct contrast with G12V, indicating different approaches gain-of-function mutations in the RASGEF SOS1 (in addition to must be taken to inhibit these oncoproteins.
    [Show full text]
  • Guanine Nucleotide Exchange Factors for Rho Gtpases: Turning on the Switch
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Guanine nucleotide exchange factors for Rho GTPases: turning on the switch Anja Schmidt1,3 and Alan Hall1,2 1MRC Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, and 2Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK Rho GTPases control many aspects of cell behavior Structural features through the regulation of multiple signal transduction The first mammalian GEF, Dbl, isolated in 1985 as an pathways (Van Aelst and D’Souza-Schorey 1997; Hall oncogene in an NIH 3T3 focus formation assay using 1998). Rho, Rac, and Cdc42were first recognized in the DNA from a human diffuse B-cell lymphoma (Eva and early 1990s for their unique ability to induce specific ∼ filamentous actin structures in fibroblasts; stress fibers, Aaronson 1985), was found to contain a region of 180 lamellipodia/membrane ruffles, and filopodia, respec- amino acids that showed significant sequence similarity tively (Hall 1998). Over the intervening years, evidence to CDC24, a protein identified genetically as an up- has accumulated to show that in all eukaryotic cells, stream activator of CDC42in yeast (Bender and Pringle Rho GTPases are involved in most, if not all, actin-de- 1989; Ron et al. 1991). Dbl was subsequently shown to pendent processes such as those involved in migration, catalyze nucleotide exchange on human Cdc42in vitro adhesion, morphogenesis, axon guidance, and phagocy- (Hart et al. 1991), and a conserved domain in Dbl and tosis (Kaibuchi et al. 1999; Chimini and Chavrier 2000; CDC24, now known as the DH (Dbl homology) domain, Luo 2000).
    [Show full text]