Transcriptomic Analysis of Patients with Tetralogy of Fallot Reveals the Effect of Chronic Hypoxia on Myocardial Gene Expression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KPNA1 Antibody Cat
KPNA1 Antibody Cat. No.: 5981 Western blot analysis of KPNA1 in Hela cell lysate with KPNA1 antibody at 1μg/mL. Immunocytochemistry of KPNA1 in HeLa cells with KPNA1 antibody at 2.5 μg/mL. Immunofluorescence of KPNA1 in K562 cells with KPNA1 antibody at 20 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) KPNA1 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human KPNA1. IMMUNOGEN: The immunogen is located within amino acids 30 - 80 of KPNA1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 30, 2021 1 https://www.prosci-inc.com/kpna1-antibody-5981.html KPNA1 antibody can be used for detection of KPNA1 by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunocytochemistry in human samples and Immunofluorescence in human samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate 2) Cat. No. 17-001 - HeLa Cell Slide 3) Cat. No. 17-004 - K-562 Cell Slide Properties PURIFICATION: KPNA1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: KPNA1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL KPNA1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. -
Toxicogenomics Article
Toxicogenomics Article Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers Matthew S. Forrest,1 Qing Lan,2 Alan E. Hubbard,1 Luoping Zhang,1 Roel Vermeulen,2 Xin Zhao,1 Guilan Li,3 Yen-Ying Wu,1 Min Shen,2 Songnian Yin,3 Stephen J. Chanock,2 Nathaniel Rothman,2 and Martyn T. Smith1 1School of Public Health, University of California, Berkeley, California, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA; 3National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China were then ranked and selected for further exam- Benzene is an industrial chemical and component of gasoline that is an established cause of ination using several forms of statistical analysis. leukemia. To better understand the risk benzene poses, we examined the effect of benzene expo- We also specifically examined the expression sure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe- of all cytokine genes on the array under the factory workers with well-characterized occupational exposures using microarrays and real-time a priori hypothesis that these key genes polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a involved in immune function are likely to be comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six altered by benzene exposure (Aoyama 1986). exposed–control pairs was performed. A combination of robust multiarray analysis and ordering We then attempted to confirm the array find- of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error ings for the leading differentially expressed rate, was used to identify differentially expressed genes in a global analysis. -
In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells Into Endometrial Epithelial Cells in Mouse: a Proteomic Analysis
Int J Clin Exp Pathol 2014;7(7):3662-3672 www.ijcep.com /ISSN:1936-2625/IJCEP0000322 Original Article In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis Qing Cong1,2, Bin Li1,2, Yisheng Wang1,2, Wenbi Zhang1,2, Mingjun Cheng1,2, Zhiyong Wu1,2, Xiaoyan Zhang1,2, Wei Jiang1,2, Congjian Xu1,2,3,4 1Obstetrics and Gynecology Hospital of Fudan University, 2Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 3Department of Obstetrics and Gynecology of Shanghai Medical School, 4Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China Received March 24, 2014; Accepted June 23, 2014; Epub June 15, 2014; Published July 1, 2014 Abstract: Objective: Mouse bone marrow mesenchymal stem cells (BMSCs) have been demonstrated to differenti- ate into female endometrial epithelial cells (EECs) in vivo. Our previous studies demonstrated that BMSCs can differentiate in the direction of EECs when co-cultured with endometrial stromal cells in vitro. Here, we obtain and analyse differential proteins and their relevant pathways in the process of BMSCs differentiating into EECs by iso- baric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Methods: A 0.4-µm pore size indirect co- culture system was established with female mice endometrial stromal cells (EStCs) restricted in the upper Transwell chamber and BMSCs in the lower well plate. After indirect co-culture for several days, the BMSCs were revealed to progressively differentiate towards EECs in vitro. Then, four groups were divided according to different co-culture days with single culture groups of BMSCs as controls. -
Adaptive Stress Signaling in Targeted Cancer Therapy Resistance
Oncogene (2015) 34, 5599–5606 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Adaptive stress signaling in targeted cancer therapy resistance E Pazarentzos1,2 and TG Bivona1,2 The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. Although substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumo r cell survival during treatment and the development of resistance. Here we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize -
Related Malignant Phenotypes in the Nf1-Deficient MPNST
Published OnlineFirst February 19, 2013; DOI: 10.1158/1541-7786.MCR-12-0593 Molecular Cancer Genomics Research RAS/MEK–Independent Gene Expression Reveals BMP2- Related Malignant Phenotypes in the Nf1-Deficient MPNST Daochun Sun1, Ramsi Haddad2,3, Janice M. Kraniak2, Steven D. Horne1, and Michael A. Tainsky1,2 Abstract Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal–regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery. Mol Cancer Res; 11(6); 616–27. -
Gene Expression Patterns and Tumor Uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an Orthotopic Mouse Xenotransplantation Model of Pancreatic Cancer
Journal of Nuclear Medicine, published on July 16, 2008 as doi:10.2967/jnumed.107.050021 Gene Expression Patterns and Tumor Uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an Orthotopic Mouse Xenotransplantation Model of Pancreatic Cancer Corinna von Forstner*1, Jan-Hendrik Egberts*2, Ole Ammerpohl2, Dagmara Niedzielska3, Ralph Buchert3, Pal Mikecz3, Udo Schumacher4, Kersten Peldschus5, Gerhard Adam5, Christian Pilarsky6, Robert Grutzmann6, Holger Kalthoff2, Eberhard Henze1, and Winfried Brenner3 1Department of Nuclear Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany; 2Department of General Surgery and Thoracic Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany; 3Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 4Department of Anatomy II Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 5Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and 6Department of Visceral, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany the highest and most consistent uptake in various human pan- Our aim was to use PET/MRI to evaluate and compare the uptake creatic tumor cell lines in SCID mice. The imaging results could of 18F-FDG, 3-deoxy-3-18F-fluorothymidine (18F-FLT), and 18F- be explained by gene expression patterns of membrane trans- fluorethylcholine (18F-FEC) in human pancreatic tumor cell lines porters and enzymes for tracer uptake and retention as mea- after xenotransplantation into SCID mice and to correlate tumor sured by gene array analysis and quantitative polymerase uptake with gene expression of membrane transporters and chain reaction in the respective cell lines. -
To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin. -
Involvement of DPP9 in Gene Fusions in Serous Ovarian Carcinoma
Smebye et al. BMC Cancer (2017) 17:642 DOI 10.1186/s12885-017-3625-6 RESEARCH ARTICLE Open Access Involvement of DPP9 in gene fusions in serous ovarian carcinoma Marianne Lislerud Smebye1,2, Antonio Agostini1,2, Bjarne Johannessen2,3, Jim Thorsen1,2, Ben Davidson4,5, Claes Göran Tropé6, Sverre Heim1,2,5, Rolf Inge Skotheim2,3 and Francesca Micci1,2* Abstract Background: A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods: Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results: We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. -
(HMGB1) Deletion Leads to Small Heart and Glycolipid Metabolic
Yu et al. Cell Death Discovery (2020) 6:106 https://doi.org/10.1038/s41420-020-00340-9 Cell Death Discovery ARTICLE Open Access Cardiomyocyte-restricted high-mobility group box 1 (HMGB1) deletion leads to small heart and glycolipid metabolic disorder through GR/PGC-1α signalling Peng Yu 1, Ming Liu2,BaoliZhang3,YingYu2,EnyongSu3,ShiyaoXie3,LeiZhang3,XueYang3,HongJiang 3, Ruizhen Chen3, Yunzeng Zou3 and Junbo Ge3 Abstract Cardiac growth and remodelling are key biological processes influencing the physiological performance of the heart, and a previous study showed a critical role for intracellular HMGB1 in vitro. However, the in vivo study, which used conditional Hmgb1 ablation, did not show a significant effect on cellular or organic function. We have demonstrated the extracellular effect of HMGB1 as a pro-inflammatory molecule on cardiac remodelling. In this study, we found that HMGB1 deletion by cTnT-Cre in mouse hearts altered glucocorticoid receptor (GR) function and glycolipid metabolism, eventually leading to growth retardation, small heart and heart failure. The subcellular morphology did not show a significant change caused by HMGB1 knockout. The heart showed significant elevation of glycolysis, free fatty acid deposition and related enzyme changes. Transcriptomic analysis revealed a list of differentially expressed genes that coincide with glucocorticoid receptor function in neonatal mice and a significant increase in inflammatory genes in 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; adult mice. Cardiac HMGB1 knockout led to a series of changes in PGC-1α, UCP3 and GyK, which were the cause of metabolic changes and further impacted cardiac function. Ckmm-Cre Hmgb1fl/fl mice did not show a specific phenotype, which was consistent with the reported negative result of cardiomyocyte-specific Hmgb1 deletion via MHC-Cre. -
Transport of Sugars
BI84CH32-Frommer ARI 29 April 2015 12:34 Transport of Sugars Li-Qing Chen,1,∗ Lily S. Cheung,1,∗ Liang Feng,3 Widmar Tanner,2 and Wolf B. Frommer1 1Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; email: [email protected] 2Zellbiologie und Pflanzenbiochemie, Universitat¨ Regensburg, 93040 Regensburg, Germany 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Biochem. 2015. 84:865–94 Keywords First published online as a Review in Advance on glucose, sucrose, carrier, GLUT, SGLT, SWEET March 5, 2015 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Soluble sugars serve five main purposes in multicellular organisms: as sources This article’s doi: of carbon skeletons, osmolytes, signals, and transient energy storage and as 10.1146/annurev-biochem-060614-033904 transport molecules. Most sugars are derived from photosynthetic organ- Copyright c 2015 by Annual Reviews. isms, particularly plants. In multicellular organisms, some cells specialize All rights reserved in providing sugars to other cells (e.g., intestinal and liver cells in animals, ∗ These authors contributed equally to this review. photosynthetic cells in plants), whereas others depend completely on an ex- Annu. Rev. Biochem. 2015.84:865-894. Downloaded from www.annualreviews.org ternal supply (e.g., brain cells, roots and seeds). This cellular exchange of Access provided by b-on: Universidade de Lisboa (UL) on 09/05/16. For personal use only. sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is criti- cal for plants, animals, and humans. -
NICU Gene List Generator.Xlsx
Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2 -
(12) Patent Application Publication (10) Pub. No.: US 2017/0029891 A1 SHARP Et Al
US 2017.0029891A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0029891 A1 SHARP et al. (43) Pub. Date: Feb. 2, 2017 (54) BOMARKERS FOR DAGNOSING (60) Provisional application No. 61/584.232, filed on Jan. SCHEMA 7, 2012. (71) Applicant: The Regents of the University of California, Oakland, CA (US) Publication Classification (51) Int. C. (72) Inventors: Frank SHARP, Davis, CA (US); Glen CI2O I/68 (2006.01) C. JICKLING, Sacramento, CA (US) (52) U.S. C. (73) Assignee: The Regents of the University of CPC ....... CI2O 1/6883 (2013.01); C12O 2600/158 California, Oakland, CA (US) (2013.01); C12O 2600/118 (2013.01) (21) Appl. No.: 15/226,844 (57) ABSTRACT (22) Filed: Aug. 2, 2016 The present invention provides methods and compositions for diagnosing and predicting the occurrence of ischemia. Related U.S. Application Data For example, the present invention provides methods and (63) Continuation of application No. 14/370.709, filed on compositions for diagnosing and predicting the risk and Jul. 3, 2014, now Pat. No. 9,410,204, filed as appli cause of transient neurological events (TNE) as ischemic or cation No. PCT/US2013/020240 on Jan. 4, 2013. non-ischemic. Patent Application Publication Feb. 2, 2017. Sheet 1 of 3 US 2017/0029891 A1 TA (n=263 WS schemic Stroke (n=94) VRF Contro ra.) vs WRF Control (n=44) Fig. 1 A. Derivation Cross-Walidation 26 Gene 10-fold leave-one-out DA Prediction Model TA-DW+f Minor Stroke (n=17) Fia. 1 B. Validation g Nonischemic TNE {n=13) Fig.