Generator Protection REG650 Application Manual

Total Page:16

File Type:pdf, Size:1020Kb

Generator Protection REG650 Application Manual Relion® 650 series Generator protection REG650 Application Manual Document ID: 1MRK 502 033-UEN Issued: February 2011 Revision: - Product version: 1.1 © Copyright 2011 ABB. All rights reserved Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software or hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license. Trademarks ABB and Relion are registered trademarks of ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders. Warranty Please inquire about the terms of warranty from your nearest ABB representative. ABB AB Substation Automation Products SE-721 59 Västerås Sweden Telephone: +46 (0) 21 32 50 00 Facsimile: +46 (0) 21 14 69 18 http://www.abb.com/substationautomation Disclaimer The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/ or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks. This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment. Conformity This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The IED is designed in accordance with the international standards of the IEC 60255 series. Table of contents Table of contents Section 1 Introduction.....................................................................15 This manual......................................................................................15 Intended audience............................................................................15 Product documentation.....................................................................16 Product documentation set..........................................................16 Document revision history...........................................................17 Related documents......................................................................17 Symbols and conventions.................................................................18 Safety indication symbols............................................................18 Manual conventions.....................................................................19 Section 2 Application......................................................................21 REG650 application..........................................................................21 Available functions............................................................................24 Main protection functions.............................................................24 Back-up protection functions.......................................................24 Control and monitoring functions.................................................25 Designed to communicate...........................................................27 Basic IED functions.....................................................................28 REG650 application examples.........................................................28 Adaptation to different applications.............................................28 Single generator connected via a unit transformer to a High Voltage (HV) system......................................................30 Single generator, including the auxiliary transformer, connected via an unit transformer to a High Voltage (HV) system............................................................................31 Generating unit, including both generator and unit transformer, connected to a solidly earthed High Voltage (HV) system..............................................................32 Generating unit, including both generator and unit transformer, connected to a high impedance earthed High Voltage (HV) system......................................................33 Functionality table..................................................................34 Single generator/transformer unit, connected to a solidly earthed High Voltage (HV) system, with redundant protection................................................................................37 Single generator/transformer unit, connected to a high impedance earthed High Voltage (HV) system, with redundant protection..............................................................38 Two generators having one three-winding unit transformer, connected to a solidly earthed High 1 Application Manual Table of contents Voltage (HV) system, with redundant protection with unit differential protection including the generators.......................39 Two generators having one three-winding unit transformer, connected to a solidly earthed High Voltage (HV) system, with redundant protection with unit transformer differential protection...........................................40 Functionality table..................................................................41 Section 3 REG650 setting examples..............................................45 Calculating general settings for analogue TRM inputs 4I 1I 5U.......47 Calculating general settings for analogue AIM inputs 6I 4U.............48 Preprocessing blocks SMAI..............................................................49 Calculating settings for global base values for setting function GBSVAL...........................................................................................50 Calculating settings for generator differential protection GENPDIF..........................................................................................51 Calculating settings for underimpedance protection for generators and transformers ZGPDIS .............................................52 Calculating settings for zone 1....................................................53 Calculating settings for zone 2....................................................53 Calculating settings for zone 3....................................................54 Calculating settings for the Load encroachment function............54 Calculating settings for out-of-step protection OOSPPAM ..............56 Calculating settings for loss of excitation LEXPDIS ........................61 Negative-sequence time overcurrent protection for machines NS2PTOC ........................................................................................65 Calculating settings for four step phase overcurrent protection OC4PTOC........................................................................................65 Calculating settings for generator phase overcurrent protection.....................................................................................65 Calculating settings for step 1................................................65 Calculating settings for step 2................................................66 Calculating settings for auxiliary transformer phase overcurrent protection..................................................................66 Calculating settings for step 1................................................67 Calculating settings for step 4................................................67 100% Stator earth fault protection, 3rd harmonic based STEFPHIZ .......................................................................................68 Stator earth fault protection (neutral point voltage)..........................70 Section 4 Analog inputs..................................................................71 Introduction.......................................................................................71 Setting guidelines.............................................................................71 Setting of the phase reference channel.......................................71 Example.................................................................................71 Setting of current channels.....................................................71 2 Application Manual Table of contents Example 1..............................................................................72
Recommended publications
  • Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
    ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components.
    [Show full text]
  • Maintenance Manuals
    1ZVN460100 – D Maintenance Manuals 1ZVN460100 – D 2 / 3 Table of contents 1 Maintenance............................................................................................................... 3 2 Trouble Shooting ....................................................................................................... 5 1ZVN460100-D 1. Maintenance: Subject Check Time period Remarks Year Month Insulating oil Dielectric strength 3 Moisture content 1 Neutralisation value 1 Interfacial surface tension 1 Water content 1 Sludge content 1 Gas analysis 1 Oil tightness Tank 3 Conservator 3 Cooling equipment 3 Piping 3 Bushings 3 Cable sealing ends 3 If applicable Cable boxes 3 If applicable Buchholz relay 3 Gate valves 3 Valves 3 Oil level Tank 1 Conservator 1 Bushings 1 Cable sealing ends 1 If applicable Cable boxes 1 If applicable Thermometer pockets 1 Venting devices Tank 1 Release vent screws until Cooling equipment 1 Oil emerges. Afterwards Intermediate piping 1 screw plugs tight Bushings 1 Piping 1 Buchholz relay 1 Cable sealing ends 1 If applicable Earthing devices All metal parts 1 Tank 1 Motors 1 Star points 1 If applicable Surge arresters 1 If applicable Control cabinet 1 Steal armoured cabling 1 Shut-off devices In position “service” As required See plan “Position of shut off devices” (if provided) Buchholz relay Direction of oil flow At erection Float 1 Contacts 1 Gas sampling device 1 If applicable Functional test 1 Dial-type thermometers Contact setting 1 See the Technical data Position of maximum pointer 1 Functional test 1 Current
    [Show full text]
  • Power Source for High Voltage Column of Injector to Proton
    THPSC018 Proceedings of RuPAC-2010, Protvino, Russia POWER SOURCE FOR HIGH-VOLTAGE COLUMN OF INJECTOR TO PROTON SYNCHROTRON WITH OUTPUT POWER UP TO 5KW Golubenko Yu.I., Medvedko A.S., Nemitov P.I., Pureskin D.N., Senkov D.V., BINP Novosibirsk Russia Abstract converter with insulated gate bipolar transistors (IGBT) as The presented report contains the description of power switches (part A) and the isolation transformer with source with output voltage of sinusoidal shape with synchronous rectifier (part B). The design of power amplitude up to 150V, frequency 400Hz and output converter consists of 3-phase diode rectifier VD1, power up to 5kW, operating on the primary coil of high electromagnetic (EMI) filter F1, switch SW1, rectifier’s voltage transformer - rectifier of precision 1.5MV filter L1 C1-C8, 20 kHz inverter with IGBT switches Q1- electrostatic accelerator – injector for proton synchrotron. Q4, isolation transformer T1, synchronous rectifier O5- The source consists of the input converter with IGBT Q8, output low-pass filter L2 C9 and three current switches, transformer and the synchronous rectifier with sensors: U1, U2 and U3. IGBT switches also. Converter works with a principle of pulse-width modulation (PWM) on programmed from 15 Harmonic PS High voltage to 25 kHz frequency. In addition, PWM signal is 400Hz 120V column modulated by sinusoidal 400Hz signal. The controller of 380V the source is developed with DSP and PLM, which allows 50Hz L1 Ls A 900uHn 230uHn optimizing operations of the source. For control of the Cp B 80uF out source serial CAN-interface is used. The efficiency of C1 1.5MV system is more than 80% at the nominal output power C 400uF 5kW.
    [Show full text]
  • Power Transformer Protection
    Power Transformer Protection Course No: E06-003 Credit: 6 PDH Velimir Lackovic, Char. Eng. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] POWER TRANSFORMER PROTECTION The advancement of electrical power systems has been reflected in the developments in power transformer manufacturing. This has led to a wide range of power transformers. Their ratings range from a few kVA to several hundred MVA and are used for a wide variety of applications. Power transformer protection varies with the application and transformer importance. In the case of a fault within the power transformer it is important to minimize tripping time in order to decrease the impact of thermal stress and electrodynamic forces. Distribution power transformers can be protected by using fuses or overcurrent protection relays. This leads to time-delayed protection due to downstream co-ordination requirements. Nevertheless, time delayed short circuit clearance is unacceptable on larger power transformers due to system operation/stability and cost of repair. Power transformer short circuits are typically grouped into five categories: - Winding and terminal short circuits - Core short circuits - Tank and transformer accessory short circuits - On–load tap changer short circuits - Prolonged or uncleared external short circuits Summary of short circuit causes initiated in the power transformer itself, is shown in Figure 1. Winding and Terminal Core Tank and Accessories OLTC Figure 1. Power transformer short circuit statistics TRANSFORMER WINDING FAULTS A transformer winding fault is limited in magnitude by the following factors: - source impedance - neutral grounding impedance - winding connection arrangement - fault voltage - power transformer leakage reactance Few distinct cases come up and are described below.
    [Show full text]
  • B. Tech Electrical.Pdf
    JECRC University Course Structure for Electrical Engineering (B.Tech.) JECRC UNIVERSITY Faculty of Engineering & Technology B.Tech in Electrical Engineering Teaching Scheme Semester III Subject Code Subject Contact Hrs Credits L-T-P Electronics Devices & Circuits 3-1-2 5 Circuit Analysis – I 3-1-0 4 Electrical Machines – I 3-1-2 5 Electrical Measurements 3-1-2 5 Mathematics – III 3-1-0 4 Computer Programming – I 3-0-2 4 Total 18-5-8 27 JECRC UNIVERSITY Faculty of Engineering & Technology B.Tech in Electrical Engineering Teaching Scheme Semester IV Subject Code Subject Contact Hrs Credits L-T-P Analogue Electronics 3-1-2 5 Digital Electronics 3-0-2 4 Circuit Analysis – II 3-1-0 4 Electrical Machines – II 3-1-2 5 Advanced Mathematics 3-1-0 4 Generation of Electric Power 3-0-0 3 Total 18-4-6 25 JECRC UNIVERSITY Faculty of Engineering & Technology B.Tech in Electrical Engineering Teaching Scheme Semester V Subject Code Subject Contact Hrs Credits L-T-P Power Electronics-I 3-1-2 5 Microprocessor & Computer 3-0-2 4 Architecture Transmission & Distribution – I 3-1-0 4 Control Systems 3-1-2 5 Utilization of Electrical Power 3-0-0 3 Digital Signal Processing 3-0-0 3 Total 18-3-6 24 JECRC UNIVERSITY Faculty of Engineering & Technology B.Tech in Electrical Engineering Teaching Scheme Semester VI Subject Code Subject Contact Hrs Credits L-T-P Power Electronics –II 3-1-2 5 Power System Analysis 3-1-2 5 EHV AC/DC Transmission 3-0-0 3 Switch Gear & protection 3-0-0 3 Instrumentation 3-0-0 3 Transmission & Distribution – II 3-1-0 4 Economics 0-0-2 1
    [Show full text]
  • Tesla Coil Works
    Matt Behrend http://home.earthlink.net/~electronxlc/ How a Tesla Coil works On this page, I will explain the basic theory of how a Tesla coil works. Below is the Table of Contents for this page. z Description of Components z How the Components Operate z LC Circuits z Voltage Gain z Resonant Rise z Oscillation and Tuning z Quarter Wavelength Frequency Description of Components A Tesla coil is a high-voltage air-core resonant transformer. A Tesla coil has 6 basic components. The first is the primary transformer, which is a high-voltage iron-core transformer. The second is the tank capacitor, which is a high-voltage capacitor that is usually homemade, but can be purchased for a high price from commercial suppliers. The third is the spark gap, basically two wires separated by a small gap of air. The fourth is the primary coil consisting of about 10 to 15 turns of thick heavy gauge wire wound around the base of the secondary coil. The fifth is the secondary coil, and it consists of many hundreds of turns of relatively thin, small gauge enameled wire. The primary and secondary coils make up an air-core transformer. That means that there is no iron core inside of the coils. The sixth basic component is the toroid. It is usually an aluminum doughnut-shaped object, and placed on top of the secondary coil. The high-voltage sparks radiate in all directions from the toroid out into the air. How the Components Operate The primary transformer converts the AC line voltage (120/240 volts AC) to over 10,000 volts.
    [Show full text]
  • Section 5 Protection Related Functions
    1MAC050144-MB C Section 5 Protection related functions Section 5 Protection related functions 5.1 Three-phase transformer inrush detector INR 5.1.1 Identification IEC 61850 IEC 60617 ANSI/IEEE C37.2 Function description identification identification device number Three-phase inrush detector INRPHAR 3I2f> INR 5.1.2 Function block Figure 184: Function block 5.1.3 Functionality The transformer inrush detection INR is used to coordinate transformer inrush situations in distribution networks. Transformer inrush detection is based on the following principle: the output signal BLK2H is activated once the numerically derived ratio of second harmonic current I_2H and the fundamental frequency current I_1H exceeds the set value. The trip time characteristic for the function is of definite time (DT) type. The function contains a blocking functionality. Blocking deactivates all outputs and resets timers. 5.1.4 Operation principle The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable. The operation of an inrush current detection function can be described by using a module diagram. All the blocks in the diagram are explained in the next sections. 615 series ANSI 383 Technical Manual Section 5 1MAC050144-MB C Protection related functions Figure 185: Functional module diagram. I_1H and I_2H represent fundamental and second harmonic values of phase currents. I_2H/I_1H This module calculates the ratio of the second harmonic (I_2H) and fundamental frequency (I_1H) phase currents. The calculated value is compared with the set Pickup value. If the calculated value exceeds the set Pickup value, the module output is activated.
    [Show full text]
  • Fist 3-30 Transformer Maintenance
    FIST 3-30 TRANSFORMER MAINTENANCE FACILITIES INSTRUCTIONS, STANDARDS, AND TECHNIQUES U0+,'&*5,7,'5*&'<7R,9'0,*1F*,'*+0,'R+1R �UR'7U*1F*R'/�797,+10 &'0'R*/1�1R7&1 F+5,*W F7/+�+,+'5*+05,RU/,+105 5,70&7R&5*70&*,'/0+3U'5 TRANSFORMER MAINTENANCE 1E%46*2WWW (&R1'�'/,R+/*R'5'7R/*70&* ,'/0+/7�*5'R+/'5*)R1U< &�HW U0+,'&*5,7,'5*&'<7R,9'0,*1F*,'*+0,'R+1R �UR'7U*1F*R'/�797,+10 &'0'R*/1�1R7&1 Acronyms and Abbreviations A air ANA self-cooled, nonventilated kW kilowatt ANSI American National Standards IEEE Institute of Electrical and Institute Electronic Engineers CEGB Central Electric Generating M/DW moisture by dry weight Board mg milligram cfm cubic feet per minute mva mega-volt-amps CH4 methane ND not detected C2 H2 acetylene N2 nitrogen C2 H4 ethylene O oil C2 H6 ethane O2 oxygen CO carbon monoxide OD outer diameter CO2 carbon dioxide ppb parts per billion CT current transformer ppm parts per million DBPC Ditertiary Butyl Paracresol psi pounds per square inch DGA dissolved gas analysis Reclamation Bureau of Reclamation EHV extra high voltage SCADA Supervisory Control and Data FA forced air (fans) Acquisition FO forced oil (pumps) STP standard temperature and G some type of gas pressure GA gas, self-cooled TDCG total dissolved combustible gas gm grams TOA Transformer Oil Analyst GSU generator step up TTR transformer turns ratio test H2 hydrogen TSC Technical Service Center ID inner diameter UV ultraviolet IFT interfacial tension V volts IEC International Electrotechnical W water/oil heat exchanger Commission IR infrared JHA job hazard analysis KOH potassium hydroxide kV kilovolt kVA kilovoltampere Contents Page 1.
    [Show full text]
  • Outdoor Instrument Transformers
    Outdoor Instrument Transformers Buyer’s Guide Contents Table of Contents Chapter - Page Products Introduction A - 2 Explanations B - 1 Silicone Rubber (SIR) Insulators C - 1 Design Features and Advantages Current Transformers IMB D - 1 Inductive Voltage Transformer EMF E - 1 Capacitor Voltage Transformer CPA/CPB F - 1 Technical Technical Catalogues Information CT IMB G - 1 VT EMF H - 1 CVT CPA/CPB (IEC) I - 1 CVT CPA/CPB (ANSI) J - 1 Optional Cable Entry Kits - Roxtec CF 16 K - 1 Quality Control and Testing L - 1 Inquiry and Ordering Data M - 1 A-1 Edition 5, 2008-03 ABB Instrument Transformers — Buyer’s Guide Introduction Day after day, all year around— with ABB Instrument Transformers ABB has been producing instrument trans- All instrument transformers supplied by ABB formers for more than 60 years. Thousands are tailor-made to meet the needs of our of our products perform vital functions in customers. electric power networks around the world – An instrument transformer must be capable of day after day, all year round. withstanding very high stresses in all climatic Their main applications include revenue conditions. We design and manufacture our metering, control, indication and relay pro- products for a service life of at least 30 years. tection. Actually, most last even longer. Product range Type Highest Voltage for Equipment (kV) Current Transformer IMB Hairpin/Tank type IMB 36 - 800 36 - 765 Paper, mineral oil insulation, quartz filling Inductive Voltage Transformer EMF Paper, mineral oil insulation, quartz filling EMF 52 - 170 52 - 170 Capacitor Voltage Transformer CP CVD: Mixed dielectric polypropylene-film and synthetic oil.
    [Show full text]
  • Practices of Insulating Materials in Instrument Transformers
    500 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Practices of Insulating Materials in Instrument Transformers A.Masood, M.U.Zuberi, M.S.Alam, E.Husain, M.Y.Khan I. INTRODUCTION TABLE I Type of Test Applied on The study of insulating material selection, behavior and Type Test CT PT performance are important aspects to be considered for Short Time Current Test Yes No designing any electrical instrument, machine or device. Temperature Rise Test Yes Yes Apart from conductors, insulator forms the backbone of Lightning Impulse Voltage Withstand Yes Yes any electrical system. Though insulators form the Test backbone, they are also the weakest link in the system. H.V.Power Frequency Wet Withstand Yes Yes Hence, maximum care and attention is needed while Test choosing insulating materials for a given application so Routine Test that it gives the desired performance under worst working conditions. This paper addresses the problem of selection H.V. Power Frequency Dry Withstand Yes Yes criteria, test specifications and material treatment to justify Test on Primary Winding the use of various dielectrics/insulating materials used for H.V. Power Frequency Dry Withstand Yes Yes insulating high voltage instrument transformers i.e. CTs Test on Secondary Winding and PTs. Over-Voltage Inter-turn Test While in use, insulating materials are subjected to Partial Discharge Test Yes No various electrical, mechanical, thermal stresses and partial Yes Yes discharges. Therefore, criteria for selection of these materials is, that, they must withstand these stresses The temperature rise of winding when subjected to without or with such rate of deterioration such that their continuous thermal current or voltage as applicable to performance is not affected throughout the life expectancy instrument transformer at the rated frequency and of the equipment, which is considered approximately 25- current/voltage output determines the class of insulation or 30 years.[1] dielectric surrounding the winding.
    [Show full text]
  • Power Transformer Protection Author Application Guide R Nylen Senior Application Engineer
    A GO3-5005 E March 1988 Power Transformer Protection Author Application Guide R Nylen Senior application engineer ) ABB Relays Power transformer protection AGO3-5005 E Page 2 List of contents 1. INTRODUCTION 2. CONDITlONS LEADING TO FAULTS 4.4 Grou~d fault protection 2.1 Insulation breakdown 4.4.1 General 2.2 Aging of insulation 4.4.2 Low irrnpedance residual overcurrent relay 2.3 Overheating due to overexcitation 4.4.3 Harmonic restraint relay 2.4 Oil contamination and leakage 4.4.4 High impedance restricted relay 2.5 Reduced cooling 4.4.5 Low impedance restricted relay 3. FAULT CURRENT 4.4.6 Tank protection 3.1 Ground faults in a solidly grounded 4.4.7 Residual voltage relay star-connected secondary winding 4.5 Overexcitation protection 3.2 Ground faults in a high impedance grounded star-connected 4.6 Flashover and ground fault protections for low voltage systems secondary winding 3.3 Ground faults in a delta-connected 4.6.1 Systems without rectifiers or frequency converters winding 3.4 Turn-to-turn faults 4.6.2 Systems with rectifiers and frequency converters without 3.5 Phase-to-phase faults pulse'width-modulation 4. PROTECTIVE RELAVS 4.6.3 Systems with rectifiers and pulse- 4.1 General width-modulated frequency converters 4.2 Differential relays 4.2.1 General 5. MONITORS ) 4.2.2 Differential relays for fully insulated 5.1 Gener,al transformers 5.2 Gas d~tector relay 4.2.3 Differential relays for auto- 5.3 Temperature monitoring transformers 5.4 PresslUre relay for on-load tap- 4.3 Overcurrent protection and changsrs impedance relays 5.5 PresslUre relief valve 4.3.1 Time-overcurrent relays 5.6 Oil level monitor 4.3.2 Under-impedance relays 5.7 Silica gel dehydrating breather 4.3.3 Distance relays 6.
    [Show full text]
  • Theory and Technology of Instrument Transformers
    THEORY AND TECHNOLOGY OF INSTRUMENT TRANSFORMERS TRAINING BOOKLET: 2 The information in this document is subject to change. Contact ARTECHE to confi rm the characteristics and availability of the products described here. Jaime Berrosteguieta / Ángel Enzunza © ARTECHE Moving together CONTENTS 1. Instrument Transformers | 4 5. Other Instrument Transformers | 31 1.1. Defi nitions | 4 5.1. Combined Instrument 1.2. Objective | 4 Transformers | 31 1.3. General Points in 5.2. Capacitive Voltage Current Transformers | 5 Transformers (CVT) | 32 1.4 General Points in Voltage Transformers | 6 6. Dielectric insulation | 33 6.1. Insulation of instrument 2. Theory of Instrument Transformers | 7 transformers | 33 2.1. Basics | 7 6.2. Insulation Testing | 34 2.2. Equivalent Transformer | 8 2.3. Equivalent Transformer Standards | 35 circuit Diagram | 8 7. 7.1. Standards Consulted | 35 7.2. Insulation Levels | 35 3. Current Transformers | 9 7.3. Environmental Conditions | 35 3.1. General Equations | 9 7.4. Current Transformers | 36 3.2. Vectorial Diagram | 9 7.5. Voltage Transformers | 43 3.3. Current & Phase Errors | 10 3.4. Current Transformers for Measuring | 12 3.5. Current Transformers for Protection | 14 3.6. Current Transformers for Protection which Require Transient Regime Response | 16 3.7. Burden | 18 3.8. Resistance to Short-circuits | 19 3.9. Operation of an Open Circuit Current Transformer| 20 3.10. Special Versions of Current Transformers | 20 3.11. Choosing a Current Transformer | 21 4. Voltage Transformers | 22 4.1. General Equations | 22 4.2. Vectorial Diagram | 22 4.3. Voltage & Phase Errors | 23 4.4. Voltage Transformers for Measuring | 24 4.5.
    [Show full text]