Autonomous Collision Avoidance for Unmanned Aerial Systems

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Collision Avoidance for Unmanned Aerial Systems Cranfield University Marco Melega AUTONOMOUS COLLISION AVOIDANCE FOR UNMANNED AERIAL SYSTEMS School of Engineering Department of Engineering Physics Autonomous and Intelligent Systems Group Ph.D.Thesis Supervisors: Dr. Al Savvaris Dr. Antonios Tsourdos 2014 Cranfield University School of Engineering Department of Engineering Physics Autonomous and Intelligent Systems Group Ph.D.Thesis Marco Melega AUTONOMOUS COLLISION AVOIDANCE FOR UNMANNED AERIAL SYSTEMS Supervisors: Dr. Al Savvaris Dr. Antonios Tsourdos 2014 This thesis is submitted in partial fulfilment of the requirements for the degree of Ph.D.. c Cranfield University 2014. All Rights Reserved. No part of this publication may be reproduced without the written permission of the copyright holder. Abstract Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub- stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in- cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered. ii Acknowledgements The author wishes to express sincere appreciation to Dr. Al Savvaris for the support given in the accomplishment of the work here described. He wants moreover to warmly thanks my family for believing in me and getting behind me in this important part of my life. iv List of Contents Abstracti Acknowledgements iii 1 Introduction1 1.1 UAVs and UASs .............................2 1.2 Unmanned Aerial System Today.....................2 1.3 New Rules to Allow UAVs to Fly....................4 1.4 UAS Human Factors...........................5 1.5 Situation Awareness and Equivalent Level of Safety for UAS .....6 1.6 UAS Airworthiness............................8 1.7 Contributions to Knowledge of this Project...............8 1.8 Methodology............................... 10 1.9 Thesis Outline............................... 11 1.10 Publications................................ 12 2 Control of UAVs 13 2.1 Short History of UASs evolution..................... 13 2.1.1 Early Developments....................... 13 2.1.2 World War I............................ 14 2.1.3 Interwar Period.......................... 15 2.1.4 World War II........................... 16 2.1.5 Post-War............................. 18 2.1.6 Vietnam War........................... 20 2.1.7 Modern Era............................ 22 2.2 UAV Level of Autonomy......................... 24 2.3 Supervisory Controller.......................... 26 vi 2.4 GCS Human-Machine Interface Design................. 28 2.5 Direct Control Interfaces......................... 29 2.6 Multimodal/Multisensory Interface................... 30 2.7 Supervisory Control Interfaces...................... 31 2.8 Novel Interfaces.............................. 33 2.8.1 Soft Controls........................... 33 2.8.2 PDA Based Interface....................... 35 2.8.3 Speech-Based Input........................ 35 2.9 Chapter Summary............................ 36 3 Sense and Avoid Literature Review 39 3.1 General Considerations.......................... 39 3.2 Functions................................. 40 3.3 Operating Phases............................. 41 3.4 Rules of Air and S&A .......................... 42 3.5 Operator Involvement in S&A Systems................. 45 3.5.1 Effect of Link Latency and Criticality.............. 46 3.6 Automatic Collision Detection in Manned Aviation.......... 48 3.7 Alerting System Design.......................... 49 3.8 Design Factors.............................. 53 3.8.1 Conflict Detection........................ 53 3.8.2 Avoidance manoeuvre Planning................. 56 3.8.3 General notes........................... 58 3.9 Chapter Summary............................ 58 4 Previous Works on GCS and S&A Integration 61 4.1 GCS and situation awareness...................... 61 4.2 UAS and Operator............................ 63 4.3 GCS Design Guidelines.......................... 64 4.4 Primary Flight Display.......................... 66 4.5 S&A Display Design Guidelines..................... 69 4.6 CDTI ................................... 71 4.7 2D Planner Display............................ 72 4.8 Synthetic Vision System......................... 74 vii 4.8.1 SVSs in UASs ........................... 75 4.8.2 SVS ambiguities.......................... 77 4.9 Head-Up Display............................. 79 4.10 Augmented Reality Display....................... 81 4.11 Cognitive Tunneling........................... 83 4.12 Multimodal Display............................ 84 4.13 Chapter Summary............................ 86 5 Simulation Environment 89 5.1 System Architecture........................... 89 5.2 Aircraft Simulator............................ 90 5.3 Simulator Settings............................ 94 5.4 ANS Structure.............................. 97 5.5 Path Following Algorithm........................ 98 6 Proposed S&A Algorithm 101 6.1 Assumptions................................ 101 6.2 Preliminary Definitions.......................... 101 6.3 Conflicts Detection............................ 104 6.4 General Approach for Estimating the Resolution Manoeuvre..... 104 6.5 Horizontal Resolution Estimation.................... 106 6.5.1 Conditions for a Conservative Trajectory Estimation..... 107 6.5.2 Heading Angle Profile Fitting.................. 110 6.5.3 Horizontal Manoeuvre Optimisation............... 111 6.6 Vertical Resolution Manoeuvre Definition................ 114 6.7 Manoeuvre Selection and Autonomous Resolution........... 115 6.8 Comparison of the algorithm with previous approaches........ 116 6.9 Chapter Summary............................ 118 7 GCS Mock-Up 119 7.1 Control Interface............................. 119 7.2 Information Display Configuration.................... 120 7.3 Hardware Structure............................ 121 7.4 S&A System Integration......................... 122 viii 7.5 Navigation Display............................ 122 7.5.1 Navigation Map.......................... 124 7.6 Primary Flight Display.......................... 126 7.6.1 Flight Condition Parameters................... 127 7.6.2 S&A System HMI ......................... 129 7.6.3 Autopilots Modes......................... 131 7.7 Simulation Controller........................... 131 7.8 Chapter Summary............................ 135 8 Simulations 137 8.1 Simulations Selection........................... 137 8.2 Mirroring Simulations.......................... 138 8.2.1 Head-on Conflict Risk...................... 139 8.2.2 Descending Threat........................ 142 8.2.3 Climbing Threat......................... 144 8.2.4 Threat Approaching from Left.................. 145 8.2.5 Threat Approaching from Right................. 149 8.2.6 Threat Descending from Left.................. 150 8.2.7 Threat Climbing from Left.................... 154 8.2.8 Threat Descending from Right.................. 156 8.2.9 Threat Climbing from Right................... 159 8.3 Multiple Threats Scenario in P/F Mode................ 161 8.4 Last-Resort Scenario........................... 163 8.5 Simulation Tests Operators Selection.................. 165 8.6 Simulation Tests Methodology...................... 168 8.7 Simulation Tests Results......................... 170 8.8 Chapter Summary............................ 172 9 Conclusions and Future Works 175 9.1 Conclusions................................ 175 9.2 Future Works............................... 177 List of Figures 1.1 the Altair RPV ..............................4 1.2 the Northrop Grumman RQ-4 Global Hawk RPV ...........4 1.3 the preparation for the flight by technicians of an Aerostar UAV on the area struck from the 27th February 2008 earthquake in Chile.....4 1.4 an UAV used by KOLIBRI Geo Services for avalanche and climate research tasks...............................4 2.1 the Hewitt-Sperry Automatic Airplane ................. 14 2.2 the Kettering Aerial Torpedo ....................... 14 2.3 the Standard E-1 ............................
Recommended publications
  • RC Propbusters of Salem CT
    RC Propbusters of Salem CT www.rcpropbusters.com AMA Club No 191 Jim Holzworth, Newsletter Editor Founded 1937 [email protected], 860-885-9260 June 2018 Newsletter Follow-Up: In this issue (page 2), read Mark O’Connell’s response from Senator Chris Murphy's office regarding the FAA Reauthorization Act. Upcoming Events: July 14th – Electric Fun Fly (rain date: 15th) August 4th – Neighborhood Fun Fly (rain date: 5th) September 3rd – Club Fun Fly & Pot Luck September 23rd – NEPRO Pylon Races Rain, rain! Rain, rain! It has been a rainy Spring on the east coast this year. Many flying events have been disrupted or canceled. At Propbusters Flying Field in Salem CT, NEPRO Races were held (no scores available at this time), but the New England Aerotow and the Memorial Fun Fly were rained out. The Memorial Fun Fly It will be rescheduled for some weekend in the fall. Waiting for a decision whether or not to postpone Propbusters Memorial Fun Fly RC Propbusters meeting dates: Third Tuesday of every month @ 7:30 PM. Meeting location is Salem Public Library, CT Route 85, about one mile north of Salem Four Corners. 1 INSTRUCTORS TOM VERNON CHIEF PILOT 860-859-1584 JOE COMEROSKI HELICOPTERS 860-848-3184 DENNIS DUPLICE FIXED WING 860-376-6230 ED DEMING HELICOPTERS 860-884-3222 ROBERT LARSON BOTH 860-526-2267 MARK O’CONNELL BOTH 860-460-8835 BERNIE LISKOV FIXED WING 860-460-7095 LEN BUFFINTON * GLIDERS 860-395-8406 KYLE SWAIDNER ** GLIDERS 860-405-5304 RICHARD CROOKS FIXED WING 860-446-0050 DAVE GRAINGER FPV RACING 860-302-3169 * Len Buffinton is a Glider and Aero-Tow expert who can also help you with fixed wing flying.
    [Show full text]
  • Open James Ross MS Thesis.Pdf
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering COMPUTER VISION AND TARGET LOCALIZATION ALGORITHMS FOR AUTONOMOUS UNMANNED AERIAL VEHICLES A Thesis in Aerospace Engineering by James Alton Ross 2008 James Alton Ross Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2008 ii The thesis of James Alton Ross was reviewed and approved* by the following: Lyle N. Long Distinguished Professor of Aerospace Engineering Thesis Advisor Joseph F. Horn Associate Professor of Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The Unmanned Aerial Vehicle (UAV) field is currently experiencing exponential growth in both military and civilian applications. An increase in the number of UAVs operating at once using more complex behavior has shown shortfalls that will require more automation in the future. This thesis discusses autonomous computer vision identification and target localization of ground targets from a UAV. The research is being pursued at the Pennsylvania State University and Applied Research Lab (ARL). Flight test results of the algorithms developed will also be presented. iv TABLE OF CONTENTS LIST OF FIGURES................................................................................................. vi LIST OF TABLES .................................................................................................. viii ACKNOWLEDGEMENTS....................................................................................
    [Show full text]
  • Rudy Arnold Photo Collection
    Rudy Arnold Photo Collection Kristine L. Kaske; revised 2008 by Melissa A. N. Keiser 2003 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 3 Biographical / Historical.................................................................................................... 2 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 4 Series 1: Black and White Negatives....................................................................... 4 Series 2: Color Transparencies.............................................................................. 62 Series 3: Glass Plate Negatives............................................................................ 84 Series : Medium-Format Black-and-White and Color Film, circa 1950-1965.......... 93
    [Show full text]
  • THE INCOMPLETE GUIDE to AIRFOIL USAGE David Lednicer
    THE INCOMPLETE GUIDE TO AIRFOIL USAGE David Lednicer Analytical Methods, Inc. 2133 152nd Ave NE Redmond, WA 98052 [email protected] Conventional Aircraft: Wing Root Airfoil Wing Tip Airfoil 3Xtrim 3X47 Ultra TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) 3Xtrim 3X55 Trener TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) AA 65-2 Canario Clark Y Clark Y AAA Vision NACA 63A415 NACA 63A415 AAI AA-2 Mamba NACA 4412 NACA 4412 AAI RQ-2 Pioneer NACA 4415 NACA 4415 AAI Shadow 200 NACA 4415 NACA 4415 AAI Shadow 400 NACA 4415 ? NACA 4415 ? AAMSA Quail Commander Clark Y Clark Y AAMSA Sparrow Commander Clark Y Clark Y Abaris Golden Arrow NACA 65-215 NACA 65-215 ABC Robin RAF-34 RAF-34 Abe Midget V Goettingen 387 Goettingen 387 Abe Mizet II Goettingen 387 Goettingen 387 Abrams Explorer NACA 23018 NACA 23009 Ace Baby Ace Clark Y mod Clark Y mod Ackland Legend Viken GTO Viken GTO Adam Aircraft A500 NASA LS(1)-0417 NASA LS(1)-0417 Adam Aircraft A700 NASA LS(1)-0417 NASA LS(1)-0417 Addyman S.T.G. Goettingen 436 Goettingen 436 AER Pegaso M 100S NACA 63-618 NACA 63-615 mod AerItalia G222 (C-27) NACA 64A315.2 ? NACA 64A315.2 ? AerItalia/AerMacchi/Embraer AMX ? 12% ? 12% AerMacchi AM-3 NACA 23016 NACA 4412 AerMacchi MB.308 NACA 230?? NACA 230?? AerMacchi MB.314 NACA 230?? NACA 230?? AerMacchi MB.320 NACA 230?? NACA 230?? AerMacchi MB.326 NACA 64A114 NACA 64A212 AerMacchi MB.336 NACA 64A114 NACA 64A212 AerMacchi MB.339 NACA 64A114 NACA 64A212 AerMacchi MC.200 Saetta NACA 23018 NACA 23009 AerMacchi MC.201 NACA 23018 NACA 23009 AerMacchi MC.202 Folgore NACA 23018 NACA 23009 AerMacchi
    [Show full text]
  • Observations from Above: Unmanned Aircraft Systems and Privacy
    OBSERVATIONS FROM ABOVE: UNMANNED AIRCRAFT SYSTEMS AND PRIVACY JOHN VILLASENOR* INTRODUCTION ............................................................458 I. UNMANNED AIRCRAFT SYSTEMS TECHNOLOGY ........................................................461 A. Historical Context: The Nineteenth and Twentieth Centuries......................................462 B. Unmanned Aircraft Systems Today ...........464 II. REGULATORY FRAMEWORK..................................468 A. The Federal Aviation Administration ........468 B. The FAA and Unmanned Aircraft Systems ...........................................................470 C. The Impact of Safety Regulations on Privacy.......................................................473 III. GOVERNMENT UNMANNED AIRCRAFT AND THE FOURTH AMENDMENT..........................475 A. Dow Chemical Co. v. United States.................476 B. California v. Ciraolo.........................................477 C. Florida v. Riley.................................................480 D. Kyllo v. United States ......................................482 E. United States v. Jones ......................................484 F. Privacy and Unmanned Aircraft Systems in Light of Supreme Court Jurisprudence.................................................486 1. Technology in “General Public Use” ...487 2. “Public Navigable Airspace” ................489 3. The Role of Imaging Technology..........493 * Nonresident senior fellow in Governance Studies and the Center for Technol‐ ogy Innovation, the Brookings Institution; Professor
    [Show full text]
  • Rg255nasa.Pdf
    http://oac.cdlib.org/findaid/ark:/13030/c8ht2rgk No online items Guide to the NACA Ames Aeronautical Laboratory and NASA Ames Research Center Records at NARA San Francisco, 1939-1971 Original NARA finding aid adapted by the NASA Ames History Office staff; machine-readable finding aid created by Gabriela A. Montoya NASA Ames Research Center History Office Mail Stop 207-1 Moffett Field, California 94035 ©1998 NASA Ames Research Center. All rights reserved. Record Group 255.4.1 1 Guide to the NACA Ames Aeronautical Laboratory and NASA Ames Research Center Records at NARA San Francisco, 1939-1971 NACA Ames Aeronautical Laboratory and NASA Ames Research Center Records at NARA San Francisco Collection number: Record Group 255.4.1 NASA Ames Research Center History Office Contact Information: National Archives and Records Administration, Pacific Region, at San Francisco 1000 Commodore Drive San Bruno, California 94066-2350 Phone: (650) 876-9009 Email: [email protected] URL: http://www.archives.gov/san-francisco/ Finding aid authored by: NASA Ames Research Center History Office URL: http://history.arc.nasa.gov Encoded by: Gabriela A. Montoya © 1998 NASA Ames Research Center. All rights reserved. Descriptive Summary Title: NACA Ames Aeronautical Laboratory and NASA Ames Research Center Records at NARA San Francisco Date (inclusive): 1939-1971 Collection Number: Record Group 255.4.1 Creator: National Advisory Committee for Aeronautics, Ames Aeronautical Laboratory;National Aeronautics and Space Administration, Ames Research Center Extent: This collection is currently unprocessed. Number of containers: 632 containers Volume: 632 cubic feet Repository: National Archives and Records Administration, Pacific Region, at San Francisco.
    [Show full text]
  • Northrop Millar Collection
    http://oac.cdlib.org/findaid/ark:/13030/c8np294k No online items Inventory of the Northrop Millar Aviation Collection SPC.2016.007 Finding aid prepared by Karen Clemons California State University Dominguez Hills, Gerth Archives and Special Collections 2016 University Library South -5039 (Fifth Floor) 1000 E. Victoria St. Carson, CA 90747 [email protected] URL: https://www.csudh.edu/libarchives/ Inventory of the Northrop Millar SPC.2016.007 1 Aviation Collection SPC.2016.007 Contributing Institution: California State University Dominguez Hills, Gerth Archives and Special Collections Title: Northrop Millar Collection Creator: Millar, Richard W., 1899-1990 Identifier/Call Number: SPC.2016.007 Physical Description: 14 boxes Physical Description: 5.8 Linear Feet Date (inclusive): 1804-1989 Abstract: The Northrop Millar Aviation Collection contains 14 boxes and 5.8 linear feet of material regarding aviation collected by Richard Millar, a former chairman of Northrop Corporation. This collection consists of articles, clippings, reprints, brochures, programs, manuals, reports, catalogs, newsletters, photographs and other materials relating to aviation and the airline industry. Language of Material: English . Access There are no access restrictions on this collection. Publication Rights All requests for permission to publish or quote from manuscripts must be submitted in writing to the Director of Archives and Special Collections. Permission for publication is given on behalf of Special Collections as the owner of the physical materials and not intended to include or imply permission of the copyright holder, which must also be obtained. Preferred Citation For information about citing archival material, see the Citations for Archival Material guide, or consult the appropriate style manual.
    [Show full text]
  • Pilóta Nélküli Repülés Profiknak És Amatőröknek
    Pilóta nélküli repülés profiknak és amatőröknek Szerkesztette Dr. Palik Mátyás Második, javított kiadás Pilóta nélküli repülés profiknak és amatőröknek Második javított kiadás © A Szerzők, 2013 © Nemzeti Közszolgálati Egyetem, 2013 Szerkesztő: Dr. Palik Mátyás Lektorok: Prof. Dr. Kovács László Prof. Dr. Óvári Gyula Olvasószerkesztő: Nagy Imréné Műszaki szerkesztő és ábrarajzoló: Dr. Szilvássy László A borítót készítette: Jámbor Krisztián A kiadvány szerzői: Dr. Békési Bertold, Dr. Bottyán Zsolt, Dr. Dunai Pál, Halászné dr. Tóth Alexandra, Prof. Dr. Makkay Imre, Dr. Palik Mátyás, Dr. Restás Ágoston, Dr. Wührl Tibor ISBN 978-615-5057-64-9 Kiadó: Nemzeti Közszolgálati Egyetem TÁMOP-4.2.1.B-11/2/KMR-2011-0001 Kritikus infrastruktúra védelmi kutatások „A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg”. A könyv „A pilóta nélküli légijárművek alkalmazásának légiközlekedés-biztonsági aspektusai” című kiemelt kutatási terület támogatásával készült el. TARTALOM TARTALOM ELŐSZÓ ...................................................................................................................................... 7 MOTTÓ ....................................................................................................................................... 9 BEVEZETÉS ............................................................................................................................. 11 UAV, DRONE, RPV, RPA, UAS, RPAS, UCAV, UCAS – ÉS AMI MÖGÖTTÜK VAN .. 11 EBBŐL ÉLNI – VAGY EZÉRT ...........................................................................................
    [Show full text]
  • Unmanned Aircraft Systems Uavs Design, Development and Deployment
    P1: OTE/OTE/SPH P2: OTE FM JWBK459-Austin March 19, 2010 12:44 Printer Name: Yet to Come UNMANNED AIRCRAFT SYSTEMS UAVS DESIGN, DEVELOPMENT AND DEPLOYMENT Reg Austin Aeronautical Consultant A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM JWBK459-Austin March 19, 2010 12:44 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM JWBK459-Austin March 19, 2010 12:44 Printer Name: Yet to Come UNMANNED AIRCRAFT SYSTEMS P1: OTE/OTE/SPH P2: OTE FM JWBK459-Austin March 19, 2010 12:44 Printer Name: Yet to Come Aerospace Series List Path Planning Strategies for Cooperative Tsourdos et al August 2010 Autonomous Air Vehicles Introduction to Antenna Placement & Installation Macnamara April 2010 Principles of Flight Simulation Allerton October 2009 Aircraft Fuel Systems Langton et al May 2009 The Global Airline Industry Belobaba April 2009 Computational Modelling and Simulation of Diston April 2009 Aircraft and the Environment: Volume 1 - Platform Kinematics and Synthetic Environment Handbook of Space Technology Ley, Wittmann, Hallmann April 2009 Aircraft Performance Theory and Practice for Pilots Swatton August 2008 Surrogate Modelling in Engineering Design: Forrester, Sobester, Keane August 2008 A Practical Guide Aircraft Systems, 3rd Edition Moir & Seabridge March 2008 Introduction to Aircraft Aeroelasticity And Loads Wright & Cooper December 2007 Stability and Control of Aircraft Systems Langton September 2006 Military Avionics Systems Moir & Seabridge February 2006 Design and Development of Aircraft Systems Moir & Seabridge June
    [Show full text]
  • Mandrosm Field.Pdf
    Κεφάλαιο 1 ΕΙ΢ΑΓΩΓΗ 1.1 Σι είναι τα UAV Η ζννοια του UAV(unmanned aerial vehicle , μθ επανδρωμζνο αεροςκάφοσ) , ι αλλιϊσ remotely piloted vehicle ( RPV) , ι Unmanned Aircraft System (UAS) αναφζρεται ςε ζνα ιπτάμενο όχθμα μθ επανδρωμζνο το οποίο είναι ικανό να εκτελζςει μια ςειρά αποςτολϊν. Για να διακρικοφν τα UAVs από τουσ πυραφλουσ , τα UAVs κακορίηονται ωσ επαναχρθςιμοποιιςιμα , μθ επανδρωμζνα ιπτάμενα οχιματα , ικανά ελεγχόμενθσ και ςυνεχοφσ πτιςθσ ςε κάποιο φψοσ , ωκοφμενα από κάποιο είδοσ μθχανισ. Οι πφραυλοι (cruise missiles) δεν κεωροφνται UAV, επειδι , το ίδιο το όχθμα είναι ζνα όπλο που καταςτρζφεται , (δθλ. που δεν επαναχρθςιμοποιείται) , αν και είναι τθλεκατευκυνόμενοι ( κακοδθγθμζνοι από απόςταςθ) και μθ επανδρωμζνοι . Τα UAVs πρωτοχρθςιμοποιικθκαν ωσ ςτόχοι (target drones δθλ. οδθγθμζνα μζςω αςυρμάτου αεροςκάφθ) κυρίωσ για τθν εκπαίδευςθ των χειρίςτων των αντιαεροπορικϊν ςυςτθμάτων , αλλά πλζον ο αυτόνομοσ ζλεγχοσ χρθςιμοποιείται όλο και περιςςότερο ςτα UAVs . Ζτςι τα UAVs χωρίηονται αρχικά ςε δφο κατθγορίεσ , κάποια ελζγχονται από μια μακρινι κζςθ(control station ,ι ground station), ενϊ κάποια άλλα πετοφν αυτόνομα , χρθςιμοποιϊντασ ςφνκετα δυναμικά ςυςτιματα αυτοματοποίθςθσ , βαςιςμζνα ςε προγραμματιςμζνα (εκ των πρότερων) ςχζδια πτιςθσ. Η ονομαςία UAV (unmanned aerial vehicle) ζχει μετατραπεί ςε UAVS (unmanned aerial vehicle system) ι ςυντομότερα ςτο UAS (unmanned aerial system) αφοφ θ ζννοια δεν αναφζρεται μόνο ςε αεροςκάφθ αλλά ςε ολόκλθρα ςυςτιματα που περιλαμβάνουν ςτακμοφσ εδάφουσ και άλλα ςτοιχεία. 1 1.2 Η εξζλιξθ των UAV 1.2.1 Ιςτορικά ςτοιχεία Η πρϊτθ , καταγραμμζνθ , χριςθ τθλεκατευκυνόμενου μθ επανδρωμζνου ιπτάμενου οχιματοσ πραγματοποιικθκε ςτισ 22 Αυγοφςτου 1849 , όταν επιτζκθκαν οι Αυςτριακοί ςτθν ιταλικι πόλθ τθσ Βενετίασ με τθλεκατευκυνόμενα μπαλόνια ςτα οποία είχαν φορτϊςει εκρθκτικζσ φλεσ.
    [Show full text]
  • Definición E Historia De Los Drones
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA Escuela Técnica Superior de Ingeniería Industrial ESTUDIO Y CARACTERIZACIÓN DE MATERIALES ESTRUCTURALES PARA DRONES TRABAJO FIN DE GRADO GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES Autor: Jorge Martínez Martínez-Carrasco Director: Isidoro José Martínez Mateo Cartagena, 04 de Octubre de 2020 ÍNDICE DE ILUSTRACIONES Ilustración 1. Significado de la palabra drone………………………………………..1 Ilustración 2. Aparición de los primeros drones……………………………………..2 Ilustración 3. The Queen Bee…………………………………………………………5 Ilustración 4. Radioplane Shelduck en una exhibición……………………………...8 Ilustración 5. Chásis de un dron……………………………………………………..12 Ilustración 6. Motor de un dron………………………………………………………14 Ilustración 7. Hélices de un dron…………………………………………………….16 Ilustración 8. Brújula electrónica de un dron……………………………………….18 Ilustración 9. Tren de aterrizaje de un dron………………………………………...18 Ilustración 10. Sistema de grabación de un dron…………………………………..19 Ilustración 11. Ejemplo de la curva tensión-deformación…………………………30 Ilustración 12. Parámetros del ensayo de dureza Vickers………………………..33 Ilustración 1. Flujos de energía en la producción de gránulos de PET……….52 Ilustración 14. Espuma polimérica flexible (VLD)………………………………….67 Ilustración 15. Espuma polimérica flexible (LD)………………………..………….67 Ilustración 16. Espuma polimérica flexible (MD)………………………………….. 67 Ilustración 17. Espuma polimérica rígida (LD)……………………………………..68 Ilustración 18. Espuma polimérica rígida (MD)…………………………………….68 Ilustración 19. Espuma polimérica rígida (HD)…………………………………….68
    [Show full text]
  • Unmanned Aerial Vehicle: Tecnologie E Prospettive Future
    Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Informatica Unmanned Aerial Vehicle: tecnologie e prospettive future Relatore: Presentata da: Luciano Bononi Marcello Allegretti Correlatore: Giampiero Giacomello Sessione II Anno Accademico 2015 - 2016 Quale è la vera vittoria? – Quella su se stessi Prima regola dell’Aikido Abstract Partendo dalla definizione di UAV e UAS, arrivando a quella di drone, nella tesi saranno definiti i termini precedenti, ossia un sistema aereo senza pilota a bordo, la nascita del termine drone e le tendenze attuali. Dopo una precisa classificazione nelle quattro categorie principali (droni per hobbisti, commerciali e militari di me- dia grandezza, militari specifici di grandi dimensioni e stealth da combattimento) saranno descritti gli ambiti di utilizzo: da un lato quello militare e della sicurez- za, dall’altro quello civile e scientifico. I capitoli centrali della tesi saranno il cuore dell’opera: l’architettura dell’UAV sarà descritta analizzando la totalità delle sue componenti, sia hardware che software. Verranno, quindi, analizzati i problemi re- lativi alla sicurezza, focalizzandosi sull’hacking di un UAV, illustrandone le varie tecniche e contromisure (tra cui anche come nascondersi da un drone). Il lavoro della tesi prosegue nei capitoli successivi con un’attenta trattazione della normativa vigente e dell’etica dei droni (nonché del diritto ad uccidere con tali sistemi). Il capitolo relativo alla tecnologia stealth sarà importante per capire le modalità di occultamento, le tendenze attuali e i possibili sviluppi futuri degli UAV militari da combattimento. Il capitolo finale sugli sviluppi futuri esporrà le migliorie tecno- logiche e gli obiettivi degli UAV negli anni a venire, insieme ad eventuali utilizzi sia militari che civili.
    [Show full text]