Autonomous Collision Avoidance for Unmanned Aerial Systems

Autonomous Collision Avoidance for Unmanned Aerial Systems

Cranfield University Marco Melega AUTONOMOUS COLLISION AVOIDANCE FOR UNMANNED AERIAL SYSTEMS School of Engineering Department of Engineering Physics Autonomous and Intelligent Systems Group Ph.D.Thesis Supervisors: Dr. Al Savvaris Dr. Antonios Tsourdos 2014 Cranfield University School of Engineering Department of Engineering Physics Autonomous and Intelligent Systems Group Ph.D.Thesis Marco Melega AUTONOMOUS COLLISION AVOIDANCE FOR UNMANNED AERIAL SYSTEMS Supervisors: Dr. Al Savvaris Dr. Antonios Tsourdos 2014 This thesis is submitted in partial fulfilment of the requirements for the degree of Ph.D.. c Cranfield University 2014. All Rights Reserved. No part of this publication may be reproduced without the written permission of the copyright holder. Abstract Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub- stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in- cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered. ii Acknowledgements The author wishes to express sincere appreciation to Dr. Al Savvaris for the support given in the accomplishment of the work here described. He wants moreover to warmly thanks my family for believing in me and getting behind me in this important part of my life. iv List of Contents Abstracti Acknowledgements iii 1 Introduction1 1.1 UAVs and UASs .............................2 1.2 Unmanned Aerial System Today.....................2 1.3 New Rules to Allow UAVs to Fly....................4 1.4 UAS Human Factors...........................5 1.5 Situation Awareness and Equivalent Level of Safety for UAS .....6 1.6 UAS Airworthiness............................8 1.7 Contributions to Knowledge of this Project...............8 1.8 Methodology............................... 10 1.9 Thesis Outline............................... 11 1.10 Publications................................ 12 2 Control of UAVs 13 2.1 Short History of UASs evolution..................... 13 2.1.1 Early Developments....................... 13 2.1.2 World War I............................ 14 2.1.3 Interwar Period.......................... 15 2.1.4 World War II........................... 16 2.1.5 Post-War............................. 18 2.1.6 Vietnam War........................... 20 2.1.7 Modern Era............................ 22 2.2 UAV Level of Autonomy......................... 24 2.3 Supervisory Controller.......................... 26 vi 2.4 GCS Human-Machine Interface Design................. 28 2.5 Direct Control Interfaces......................... 29 2.6 Multimodal/Multisensory Interface................... 30 2.7 Supervisory Control Interfaces...................... 31 2.8 Novel Interfaces.............................. 33 2.8.1 Soft Controls........................... 33 2.8.2 PDA Based Interface....................... 35 2.8.3 Speech-Based Input........................ 35 2.9 Chapter Summary............................ 36 3 Sense and Avoid Literature Review 39 3.1 General Considerations.......................... 39 3.2 Functions................................. 40 3.3 Operating Phases............................. 41 3.4 Rules of Air and S&A .......................... 42 3.5 Operator Involvement in S&A Systems................. 45 3.5.1 Effect of Link Latency and Criticality.............. 46 3.6 Automatic Collision Detection in Manned Aviation.......... 48 3.7 Alerting System Design.......................... 49 3.8 Design Factors.............................. 53 3.8.1 Conflict Detection........................ 53 3.8.2 Avoidance manoeuvre Planning................. 56 3.8.3 General notes........................... 58 3.9 Chapter Summary............................ 58 4 Previous Works on GCS and S&A Integration 61 4.1 GCS and situation awareness...................... 61 4.2 UAS and Operator............................ 63 4.3 GCS Design Guidelines.......................... 64 4.4 Primary Flight Display.......................... 66 4.5 S&A Display Design Guidelines..................... 69 4.6 CDTI ................................... 71 4.7 2D Planner Display............................ 72 4.8 Synthetic Vision System......................... 74 vii 4.8.1 SVSs in UASs ........................... 75 4.8.2 SVS ambiguities.......................... 77 4.9 Head-Up Display............................. 79 4.10 Augmented Reality Display....................... 81 4.11 Cognitive Tunneling........................... 83 4.12 Multimodal Display............................ 84 4.13 Chapter Summary............................ 86 5 Simulation Environment 89 5.1 System Architecture........................... 89 5.2 Aircraft Simulator............................ 90 5.3 Simulator Settings............................ 94 5.4 ANS Structure.............................. 97 5.5 Path Following Algorithm........................ 98 6 Proposed S&A Algorithm 101 6.1 Assumptions................................ 101 6.2 Preliminary Definitions.......................... 101 6.3 Conflicts Detection............................ 104 6.4 General Approach for Estimating the Resolution Manoeuvre..... 104 6.5 Horizontal Resolution Estimation.................... 106 6.5.1 Conditions for a Conservative Trajectory Estimation..... 107 6.5.2 Heading Angle Profile Fitting.................. 110 6.5.3 Horizontal Manoeuvre Optimisation............... 111 6.6 Vertical Resolution Manoeuvre Definition................ 114 6.7 Manoeuvre Selection and Autonomous Resolution........... 115 6.8 Comparison of the algorithm with previous approaches........ 116 6.9 Chapter Summary............................ 118 7 GCS Mock-Up 119 7.1 Control Interface............................. 119 7.2 Information Display Configuration.................... 120 7.3 Hardware Structure............................ 121 7.4 S&A System Integration......................... 122 viii 7.5 Navigation Display............................ 122 7.5.1 Navigation Map.......................... 124 7.6 Primary Flight Display.......................... 126 7.6.1 Flight Condition Parameters................... 127 7.6.2 S&A System HMI ......................... 129 7.6.3 Autopilots Modes......................... 131 7.7 Simulation Controller........................... 131 7.8 Chapter Summary............................ 135 8 Simulations 137 8.1 Simulations Selection........................... 137 8.2 Mirroring Simulations.......................... 138 8.2.1 Head-on Conflict Risk...................... 139 8.2.2 Descending Threat........................ 142 8.2.3 Climbing Threat......................... 144 8.2.4 Threat Approaching from Left.................. 145 8.2.5 Threat Approaching from Right................. 149 8.2.6 Threat Descending from Left.................. 150 8.2.7 Threat Climbing from Left.................... 154 8.2.8 Threat Descending from Right.................. 156 8.2.9 Threat Climbing from Right................... 159 8.3 Multiple Threats Scenario in P/F Mode................ 161 8.4 Last-Resort Scenario........................... 163 8.5 Simulation Tests Operators Selection.................. 165 8.6 Simulation Tests Methodology...................... 168 8.7 Simulation Tests Results......................... 170 8.8 Chapter Summary............................ 172 9 Conclusions and Future Works 175 9.1 Conclusions................................ 175 9.2 Future Works............................... 177 List of Figures 1.1 the Altair RPV ..............................4 1.2 the Northrop Grumman RQ-4 Global Hawk RPV ...........4 1.3 the preparation for the flight by technicians of an Aerostar UAV on the area struck from the 27th February 2008 earthquake in Chile.....4 1.4 an UAV used by KOLIBRI Geo Services for avalanche and climate research tasks...............................4 2.1 the Hewitt-Sperry Automatic Airplane ................. 14 2.2 the Kettering Aerial Torpedo ....................... 14 2.3 the Standard E-1 ............................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    222 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us