A Revised Chalk Lithostratigraphic Nomenclature

Total Page:16

File Type:pdf, Size:1020Kb

A Revised Chalk Lithostratigraphic Nomenclature A revised Chalk lithostratigraphic nomenclature A REVISED CHALK LITHOSTRATIGRAPHIC NOMENCLATURE Astri Fritsen & Fridtjof Riis, Norwegian Petroleum Directorate The petroleum activity in the Noth Sea over the years revealed a need to update and revise the stratigraphic framework for the chalk units. The presence of "time gaps" and redeposition in the chalk reservoirs especially challenged the the established formal lithostratigraphic nomenclature. Biostratigraphic analysis combined with chalk lithofacies, well log correlation and seismic studies were used to develop a revised complete lithostratigraphic nomenclature for the Upper Cretaceous and Paleocene chalks in the Central Graben. The most important change is the subdivision of the original formal Hod Formation into three new formations; Narve, Thud and Magne. This subdivision is based on the major stratigraphic breaks that were observed in the Hod Formation. These breaks represent time gaps of variable lengths in the biostratigraphic data, and are often seen as hardgrounds in cores, and especially in wells located on structural highs. Also in the seismic data, the Hod Formation was seen to embrace two significant sequence boundaries that could be tracked over large distances. On basis of international stratigraphic rules (Hedberg 1976), such major sequence boundaries are not recommended within a formation. Consequently, the split of the Hod Formation into three new formations was performed. To avoid confusion with the existing informal lithological subdivision of the Hod into lower, middle and upper Hod, unique names for the new units were suggested, following the tradition with names from the Norse mythology. The boundary definition of the Tor Formation has been revised, and the Vidar Formation overlying the Ekofisk Formation has been better defined. data. The resulting joint biostratigraphic INTRODUCTION and lithostratigraphic framework for the Extensive reservoir modelling and drilling chalks in the Central Graben is presented activity in the chalk areas of the North Sea in this publication, and a revision of the the last twenty years has resulted in many formal Hod Formation into three new different ways of subdividing the chalk formations; Narve, Thud and Magne is reservoirs. The oil companies developed proposed, see Figure 1. The detailed their own local stratigraphic frameworks or documentation of the basis for the nomenclatures in order to fit the well data stratigraphy, including biotrat analyses and from their license areas. This practice composite well log panels, can be found in complicated communication between oil the report (Fritsen et al 1999), available on companies and the regional understanding compact disc from the Norwegian of the chalk facies and created a need to Petroleum Directorate. update and revise the formal stratigraphic framework for the chalk units. The new stratigraphic nomenclature will improve the communication between the In the Joint Chalk Research (JCR) phase oil companies in both Norwegian and V, 1997 – 2000, the project “A Joint Chalk Danish areas, and ensure a standard basis Stratigraphic Framework” was initiated in for regional mapping and correlations order to establish a common stratigraphic between the various chalk fields and nomenclature for the Upper Cretaceous prospects. Since the presence of "time and Paleocene chalks in the Central gaps" and redeposition in the chalk Graben and Norwegian-Danish Basin. The reservoirs is especially acknowledged in work was performed by a joint work group the proposed new lithostratigraphic including geologists from the companies nomenclature, improved understanding of and agencies participating in JCR Phase V. deposition, erosion and redeposition of Biostratigraphic analyses comprised the chalk, as well as better control of seismic majority of the project work, and the interpretation on and between fields will results were interpreted together with well result. logs, chalk depositional facies and seismic - 1 - A revised Chalk lithostratigraphic nomenclature TIME Danish JCR JCR North Sea UK SCALE informal NANNO. proposed formal formal Gradstein AGE Chalk units ZONES FORMATIONS FORMATIONS FORMATIONS et al ., Isachsen and Lieberkind et.al., this study this study Lott and Knox, 1994 1995 Tonstad, 1989 1982 60.00 59.00 LISTA / VIDAR LISTA / VIDAR THANETIAN NNTp6 - 9 NORTH SEA MARL L. VÅLE PAL. VÅLE MAUREEN 61.00 NNTp5 NNTp4 NNTp3 EKOFISK DANIAN EKOFISK CHALK-6 UNIT NNTp2 EKOFISK CENE EARLY 65.00 PALEO- NNTp1 UC20 CHALK-5 UNIT TOR MAASTRICHT. UC19 TOR ROWE 70.00 UC18 CHALK-4 UNIT UC17 71.30 UC16 UC15 MAGNE CAMPANIAN CHALK-3 UNIT 80.00 JUKES UC14 HOD 83.50 UC13 THUD SANTONIAN UC12 85.80 UC11 LATE CRETACEOUS CONIACIAN UC10 LAMPLUGH 89.00 CHALK-2 UNIT 90.00 UC9 NARVE TURONIAN UC8 UC7 UC6 HERRING 93.50 UC4 & 5 BLODØKS BLODØKS UC3 CENOMANIAN UC2 HIDRA HIDRA CHALK-1 UNIT HIDRA 98.90 UC1 Figure 1: A revised chalk lithostratigraphic nomenclature quantitative or semi-quantitative METHOD nannofossil- and micropaleontological A number of 35 wells from Norwegian, analyses were used in the study. Regional Danish and UK areas were chosen for the seismic was interpreted to resolve study. Biostratigraphic data, well stratigraphic surfaces between fields and interpretations and core descriptions from key wells, and chronostratigraphic these wells were made available from the diagrams were made to identify companies. Cores and wireline logs were stratigraphic time gaps and sequence studied by the work group, and intervals boundaries in the study wells. representing possible stratigraphic sequence boundaries, time gaps or Selection of the study wells was based on redeposition were defined. In total, 1250 various criteria, including the well´s meters of core were described based on the position regarding basin and structural previous developed JCR description highs, and available core and system. With more than 700 new core biostratigraphic data. Existing stratigraphic samples collected during core descriptions, type wells, such as 1/3-1 was also a total of more than 4000 biostratigraphic included. Wells that had core coverage - 2 - A revised Chalk lithostratigraphic nomenclature across a formation boundary were Figure 2 shows the location of the study considered especially important, as were wells and the chalk fields in the North Sea wells that appeared to have been drilled Central Graben. across major stratigraphic time breaks. 2 3 4 5 7/11 57 00 57 00 2/2-2 1/3-1 1/3-8 2/2-3 56 45 JUDY 56 45 2/5-7 30/7A-2 2/5-1 TOR 2/4-B-19T2 2/5-9 2/4-A-8 EKOFISK 56 30 56 30 TOMME- 2/7-4 2/7-30 LITEN EDDA 1/9-1 2/7-B-11 ELDFISK 2/7-8 LULU-1 VALHALL 2/8-A-1 MONA-1 56 15 56 15 2/7-2 HOD T-1 2/11-A-2 SVEND 31/26A-10 BARON-2 SYD-ARNE 56 00 56 00 VALDEMAR ADDA BO-1 ADDA-2 ROAR-2 55 45 55 45 ROAR E - 4X TYRA DAN 55 30 55 30 MFB-7 M-9X 2 3 4 5 0 20 40 Km RDN9909002/6 Figure 2: Location of the study wells and chalk fields tectonics and inversion tectonics added to STRUCTURAL AND TECTONIC the structural complexity. Inversion highs, FRAMEWORK AND SEISMIC formed by uplift and reverse movement INTERPRETATION along pre-existing faults, were active at different occasions during and after chalk The Central Graben was tectonically active deposition, and the detailed timing of their during deposition of the chalk sequence. activity may differ. They often represent a Graben subsidence, inversion structures change in tectonic setting from a pre- and salt tectonics created a complex and Campanian trough to a Maastrichtian high. changing pattern of basins and highs in the Late Cretaceous and Danian. Figure 3 shows the Central Graben and its main structural elements based on During chalk deposition, the Central Anderson (1995), Britze et al. (1995) and Graben subsided along its major boundary data from the Chalk Exploration Project faults towards the stable platforms. There (CEP), which was made available for JCR were several episodes when the relatively by Phillips Petroleum Company. uplifted platforms were eroded, and acted as source areas for redeposited chalk. Salt - 3 - A revised Chalk lithostratigraphic nomenclature LATE CRETACEOUS STRUCTURAL ELEMENTS IN THE CENTRAL GRABEN 2 3 4 5 7/11 Late Cretaceous 57 00 57 00 boundary faults 2/2-2 Late Cretaceous 1/3-1 active inversion faults 1/3-8 Inverted highs 2/2-3 56 45 56 45 Salt induced 2/5-7 structures 30/7A-2 2/5-1 Stable platform thin chalks 2/4-B-19T2 2/5-9 Basin areas 2/4-A-8 56 30 56 30 2/7-4 M Deep basin 2/7-30 A N depocentre 2/7-B-11 D 1/9-1 A 2/7-8 L H Main pre-Cretaceous IG LULU-1 H fault structures L M I 2/8-A-1 O MONA-1 N N 56 15 2/7-2 D A 56 15 E R S IDGE N ES R T-1 2/11-A-2 ID GE 31/26A-10 BARON-2A R N 56 00 56 00 E R I ID NG G E H E IG H B O - J E N BO-1 ADDA-2 S R ROAR-2 55 45 I 55 45 D G E - 4X E 55 30 55 30 MFB-7 M-9X Figure 2-1 2 3 4 5 0 20 40 Km RDN9909002/6 Figure 3: Central Graben main structural elements support correlation based on logs and A major depocenter for the Cretaceous biostratigraphy. Seven sequence chalk located in the northwestern part of boundaries were interpreted to determine the Central Graben is penetrated by wells the important seismo-stratigraphic events 1/3-1 and 1/3-8. These wells have a fairly in the area, these were Blodøks, Intra complete chalk section, and they are Middle Hod, Top Middle Hod, equivalent important reference wells.
Recommended publications
  • The Lithostratigraphy and Biostratigraphy of the Chalk Group (Upper Coniacian 1 to Upper Campanian) at Scratchell’S Bay and Alum Bay, Isle of Wight, UK
    Manuscript Click here to view linked References The lithostratigraphy and biostratigraphy of the Chalk Group (Upper Coniacian 1 to Upper Campanian) at Scratchell’s Bay and Alum Bay, Isle of Wight, UK. 2 3 Peter Hopson1*, Andrew Farrant1, Ian Wilkinson1, Mark Woods1 , Sev Kender1 4 2 5 and Sofie Jehle , 6 7 1 British Geological Survey, Sir Kingsley Dunham Centre, Nottingham, NG12 8 5GG. 9 2 10 University of Tübingen, Sigwartstraße 10, 72074 Tübingen, Germany 11 12 * corresponding author [email protected] 13 14 Keywords: Cretaceous, Isle of Wight, Chalk, lithostratigraphy, biostratigraphy, 15 16 17 Abstract 18 19 The Scratchell‟s Bay and southern Alum Bay sections, in the extreme west of the Isle 20 21 of Wight on the Needles promontory, cover the stratigraphically highest Chalk Group 22 formations available in southern England. They are relatively inaccessible, other than 23 by boat, and despite being a virtually unbroken succession they have not received the 24 attention afforded to the Whitecliff GCR (Geological Conservation Review series) 25 site at the eastern extremity of the island. A detailed account of the lithostratigraphy 26 27 of the strata in Scratchell‟s Bay is presented and integrated with macro and micro 28 biostratigraphical results for each formation present. Comparisons are made with 29 earlier work to provide a comprehensive description of the Seaford Chalk, Newhaven 30 Chalk, Culver Chalk and Portsdown Chalk formations for the Needles promontory. 31 32 33 The strata described are correlated with those seen in the Culver Down Cliffs – 34 Whitecliff Bay at the eastern end of the island that form the Whitecliff GCR site.
    [Show full text]
  • Definition of Chalk
    1.1: Introduction: 1.1.1: Definition of chalk: Chalk is a soft, white, porous sedimentary carbonate rock, a form of limestone composed of the mineral calcite. Calcite is calcium carbonate or CaCO3. It forms under reasonably deep marine conditions from the gradual accumulation of minute calcite shells (coccoliths) shed from micro-organisms called coccolithophores. Flint (a type of chert unique to chalk) is very common as bands parallel to the bedding or as nodules embedded in chalk. It is probably derived from sponge spicules or other siliceous organisms as water is expelled upwards during compaction. Flint is often deposited around larger fossils such as Echinoidea which may be silicified (i.e. replaced molecule by molecule by flint). Chalk as seen in Cretaceous deposits of Western Europe is unusual among sedimentary limestone in the thickness of the beds. Most cliffs of chalk have very few obvious bedding planes unlike most thick sequences of limestone such as the Carboniferous Limestone or the Jurassic oolitic limestones. This presumably indicates very stable conditions over tens of millions of years. Figure (1-1): Calcium sulphate 1 "Nitzana Chalk curves" situated at Western Negev, Israel are chalk deposits formed at the Mesozoic era's Tethys Ocean Chalk has greater resistance to weathering and slumping than the clays with which it is usually associated, thus forming tall steep cliffs where chalk ridges meet the sea. Chalk hills, known as chalk downland, usually form where bands of chalk reach the surface at an angle, so forming a scarp slope. Because chalk is well jointed it can hold a large volume of ground water, providing a natural reservoir that releases water slowly through dry seasons.
    [Show full text]
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S
    Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S. Gulf Coast Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey Front Cover. Photos taken by Krystal Pearson, U.S. Geological Survey, near the old Sprinkle Road bridge on Little Walnut Creek, Travis County, Texas. Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources—Upper Cretaceous Austin Chalk, U.S. Gulf Coast By Krystal Pearson Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Pearson, Krystal, 2012, Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources—Upper Cretaceous Austin Chalk, U.S.
    [Show full text]
  • Flint and Chert
    61 FLINT AND CHERT. By WILLIAM HILL. F.G.S. (Presidential Address, delivered February Srd, 19/1.) CONTE:'l"TS. PAGE I. !)lTRODUCTION. 61 2. T\'PES OF FLINT AND CHERT (CRHACEOUS) 64- 3. VARIETIES OF FLINT FROM FORMATIONS OTHER THAN THE CHALK 69 4. VARIETIES OF CHERT •••" 71 Cherts of the Upper and Lower Greensand. 71 Chert of the Portland Beds. 73 Carboniferous Chert • 76 Chalcedony in Flint . 80 Chert of the Culm Measures 82 5. IMMATURE FLINT AND CHERT 83 6, GENERAL SUMMARY 85 7 CLASSIFICATION OF SILICIOUS CONCRETIONS 93 1. INTRODUCTION. VE RYONE familiar with the White Chalk of England is E also familiar with the nodules of a different substance which are scattered through it. Break one, the fracture will be conchoidal, and it will be found that within a white rind of greater or less thickness is a hard, black, translucent material, possibly with some cloudy patches, which we recognise as flint. How and when the term flint became applied to these nodules in the Chalk is a matter of some obscurity. We know that Early Man recognised the value of flint for offensive, defensive and domestic purposes, and until quite recent years it played no unimportant part in the economies of mankind. The word probably came to us from the Saxon "flinta." It is used six times by the translators of the Authorised Version of the Old and New Testament, though it seems to be applied to rocks of exceptional hardness, and not to be confined to what we know as flint. Virgil, Pliny, and Lucretius use the word silex in connec­ tion with striking fire.
    [Show full text]
  • A Contribution to the Sheet Explanation of the Ipswich District (Sheet 207): Cretaceous
    A contribution to the Sheet Explanation of the Ipswich district (Sheet 207): Cretaceous Integrated Geosurveys (Southern England) Programme Internal Report IR/05/007 BRITISH GEOLOGICAL SURVEY INTEGRATED GEOSURVEYS (SOUTHERN ENGLAND) PROGRAMME INTERNAL REPORT IR/05/007 A contribution to the Sheet Explanation of the Ipswich district (Sheet 207): Cretaceous M A Woods The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number Licence No:100017897/2004. Keywords Cretaceous, Gault Formation, Chalk Group, Lithostratigraphy, Biostratigraphy, Chronostratigraphy. Bibliographical reference WOODS, M A. 2004. A contribution to the Sheet Eplanation of the Ipswich district (Sheet 207): Cretaceous. British Geological Survey Internal Report, IR/05/007. 10pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected] You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. © NERC 2004. All rights reserved Keyworth, Nottingham British Geological Survey 2004 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS British Geological Survey offices Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at www.geologyshop.com Keyworth, Nottingham NG12 5GG The London Information Office also maintains a reference ? 0115-936 3241 Fax 0115-936 3488 collection of BGS publications including maps for consultation.
    [Show full text]
  • The Skælskør Structure in Eastern Denmark – Wrench-Related Anticline Or Primary Late Cretaceous Seafloor Topography?
    The Skælskør structure in eastern Denmark – wrench-related anticline or primary Late Cretaceous seafloor topography? FINN SURLYK, LARS OLE BOLDREEL, HOLGER LYKKE-ANDERSEN & LARS STEMMERIK Surlyk, F., Boldreel, L.O., Lykke-Andersen, H. & Stemmerik, L. 2010-11-11. The Skælskør structure in eastern Denmark – wrench-related anticline or primary Late Cretaceous seafloor topography? © 2010 by Bulletin of the Geological Society of Denmark, Vol. 58, pp. 99–109. iSSn 0011–6297. (www.2dgf.dk/publikationer/bulletin) https://doi.org/10.37570/bgsd-2010-58-08 Sorgenfrei (1951) identified a number of NW–SE oriented highs in the Upper Cretaceous – Danian Chalk Group in eastern Denmark, including the Skælskør structure and interpreted them as anticlinal folds formed by wrenching along what today is known as the Ringkøbing-Fyn High. Recent reflection seismic studies of the Chalk Group in Øresund and Kattegat have shown that similar highs actually represent topographic highs on the Late Cretaceous – Danian seafloor formed by strong contour- parallel bottom currents. Reflection seismic data collected over the Skælskør structure in order to test the hypothesis of Sorgenfrei show that the Base Chalk reflection is relatively flat with only very minor changes in inclination and cut by only a few minor faults. The structure is situated along the northern margin of a high with roots in a narrow basement block, projecting towards the northwest from the Ringkøbing Fyn High into the Danish Basin. The elevated position is maintained due to reduced subsidence as compared with the Danish Basin north of the high. The hypothesis of wrench tectonics as origin can be refuted.
    [Show full text]
  • Identification of Karst Features in the Portsdown Chalk Fm. from Aerial Photography, Dorset, UK
    Identification of Karst Features in the Portsdown Chalk Fm. from Aerial Photography, Dorset, UK Morena N Hammer1, Paul D Burley2, Howard D Mooers1 1Department of Earth and Environmental Sciences, University of Minnesota Duluth, Duluth, MN 2Department of Earth Sciences, University of Minnesota, Minneapolis, MN (email: [email protected]) Introduction Cranborne Chase hosts a unique geological and archaeological landscape in south central England. The Chase occupies the chalk downlands underlain by the cretaceous White Chalk Subgroup plateau that extends from the northern Chalke Escarpment, southward across the counties of Dorset, Wiltshire, and Hampshire (Hopson, 2005). In this region, there is extensive archaeological evidence supporting a large Neolithic population in southern central England from approximately 3600-3440 BC (Woodbridge et al., 2013). During the transition from the Mesolithic to the Neolithic at about 4000 BC, there was a significant change in the tools, farming technique, and cultural tradition. Though archaeologically these transitions are significant, there is little to no data available recording the environment that the Neolithic people were living in and how they influenced the landscape through cultivation and related impacts. One site that has yielded an extensive collection of animal and cultural remains during this time period is the excavation of Fir Tree Field Shaft doline (Allen & Green, 1998). Other typical data archives that would be used for paleoenvironmental reconstruction of the Neolithic period, such as lakes or peat fens, do not exist in Cranborne Chase because of the well-drained karst landscape. These karst features developed in the chalk can be excellent paleoenvironmental archives. Chalk, a form of limestone, is developed by the accumulation and lithification of calcium carbonate shells from marine organisms.
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]
  • NERR080 Edition 1 Natural England Marine Chalk Characterisation Project
    Natural England Research Report NERR080 Natural England marine chalk characterisation project www.gov.uk/natural -england Natural England Research Report NERR080 Natural England marine chalk characterisation project Authors: Charlotte Moffat, Heidi Richardson, Georgina Roberts Published March 2020 This report is published by Natural England under the pen Government Licence - OGLv3.0 for public sector information. You are encouraged to use, and reuse, information subject to certain conditions. For details of the licence visit Copyright. Natural England photographs are only available for non commercial purposes. If any other information such as maps or data cannot be used commercially this will be made clear within the report. ISBN 978-1-78354-527-8 © Natural England 2019 Project details This report should be cited as: MOFFAT, C., RICHARDSON, H., ROBERTS, G. 2019. Natural England marine chalk characterisation project. Natural England Research Reports, Number 080. Project manager Charlotte Moffat Marine Lead Adviser Norfolk Coast and Marine Team Natural England Area 5A, Nobel House, 17 Smith Square London SW1P 3JR [email protected] Acknowledgements We would like to thank all those that helped us by providing site specific information, attending the workshop and providing comments on the report. In particular we would like to thank Dr David H Evans for his invaluable help in developing the geology sections. NATURAL ENGLAND MARINE CHALK CHARACTERISATION PROJECT Executive Summary Chalk is a sedimentary rock largely composed of the skeletons of calcareous nanoplankton, deposited between approximately 100 and 65 million years ago during the Late Cretaceous period. Chalk can be heterogenous, with local conditions and the proportion of clay present at time of deposition responsible for the diversity.
    [Show full text]
  • Geologic Time
    MUSEUMS of WESTERN COLORADO EDUCATION Lesson1: Geologic Time This introductory lesson will give students an understanding of geologic time. The goal is to provide a context for the following lessons in terms of when events happened in relation to each other and present day. Student objectives: Students will be able to: Explain how the geologic time scale is used to organize the Earth’s history Design their own geologic time scales Describe major events in Earth’s history Determine how different events in Earth’s history relate to each other NGSS: MS-ESS1-4 Materials: Measuring tape, Sidewalk Chalk, Art Supplies, Major Events in Earth’s History handout, Geologic Timeline Quiz Time: 2-3 class periods Information relevant to geologic time for teachers: Geologic Time Scale Much has happened during the Earth’s 4.6-billion-year history. The geologic time scale is a way to organize the Earth’s past into different units based on events that have taken place. This is done by relating the stratigraphy (rock layers) to radiometric ages (see below). Absolute vs. Relative Dating The numerical (absolute) ages for certain rock layers obtained by using radiometric dating—a method that looks at the proportions of certain radioactive isotopes remaining in a sample. Samples can be either rocks or the fossils themselves. Radiometric dating is a reliable method because the unstable radioactive elements have a known half-life, which is the amount of time it takes for half of the radioactive isotopes to decay. During radioactive decay, the original isotope, called the parent isotope spontaneously converts to a new isotope called the daughter.
    [Show full text]
  • Chalk and Groundwater
    Chalk Links in the North Wessex Downs “Chalk Links” Fact Sheets: Geology groups across the region have produced a series of fact sheets explaining how the underlying chalk affects other characteristic features of this unique area including landscape, soils, land use, industry, hydrology & archaeology. Other fact sheets in this series can be downloaded from: www.northwessexdowns.org.uk FACT SHEET: CHALK AND GROUNDWATER What is chalk? Much of the North Wessex Downs is underlain by Chalk. Chalk is a soft white limestone traversed by layers of flint. It consists of minute calcareous shells and shell fragments which are the remains of plankton which floated in clear, sub-tropical seas covering most of Britain during the Upper Cretaceous, between 95 and 65 million years ago. Chalk is a highly porous rock. The microscopic spaces or pores between these particles can soak up enormous quantities of water. We can think of chalk as a giant sponge soaking up rainfall before it has a chance to run off into streams and rivers. Thus, over much of the upland Downs, there is no surface water in the form of ponds or streams. A high resolution image of the tiny chalk particles Chalk and groundwater and the spaces between them. A chalk well can yield more than 10 million litres of water per day, Chalk is the most important aquifer (underground sufficient to provide the needs of about 70,000 storage water system) in southern Britain. The total people at 150 litres per person per day. abstraction of groundwater in the UK, including that used by industry and agriculture, is some 2400 million cubic metres per year.
    [Show full text]