George Mather's Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

George Mather's Lecture Notes PERCEPTION TOPIC NOTES: Introduction to the Senses 1. Classification There are five major groups of senses: Sense Stimulus Receptor Sensory Structure Vision Electromagnetic energy (light) photoreceptors Eye Hearing Air pressure waves mechanoreceptors Ear Touch Tissue distortion mechanoreceptors Skin, muscles, etc. thermoreceptors Balance Gravity, acceleration mechanoreceptors vestibular organs Taste/smell Chemical composition chemoreceptors nose, mouth Certain basic physical and perceptual principles apply to all the senses. 2. General physical principles 1) Transduction All senses need to convert ('transduce') environmental energy into electrical energy. Receptors in each sense are specialised for transducing particular forms of energy into electrical signals for transmission to the brain. 2) Sensory pathways Electrical signals from all the senses are transmitted ultimately to the cerebral cortex via relays in the thalamus. All senses involve both cortical and sub-cortical processes, but differ in the area of cortex involved, and the involvement of sub-cortical structures. Cortical analysis is thought to be linked with conscious experience, and sub-cortical analysis is thought to be involved in unconscious events eg. reflexes. 3) Selectivity Individual neurons in each sensory system are very selective in their response to a sensory stimulus; each has a RECEPTIVE FIELD, a restricted area of the sensory space within which the stimulus must fall for the cell to respond. Different cells have receptive fields in different parts of the space (eg. spatial position on the body, position in the visual or auditory field, colour, sound frequency). 4) Sensory maps Cells with similar receptive fields tend to be found near to each other in the sense organ or cortex, so that a map of the sensory surface is formed on the surface of the organ or cortex. These maps tend to exhibit distortions favouring certain areas of the visual field, or parts of the body, or certain sound frequencies. Sensory coding requires interactions between cells with similar properties, so proximity simplifies wiring. 5) Specific nerve energy All sense organs generate the same kind of electrical signals. How can they evoke different sensations? Differences between senses are not reflected in the sensory signals, but in their destination in the brain. During neurosurgery, small electrical signals are often applied directly to the cortex of an awake (anaesthetised) patient. This stimulation evokes sensations associated with the particular sense organ connected to that part of the cortex. 3. General perceptual principles 1) Thresholds All sense organs require a certain minimum amount of stimulation ('absolute threshold') before they evoke a perceptual sensation. Note that detection threshold is not the same as threshold for discrimination or identification. We can also measure the 'difference threshold' - minimum difference between two stimuli that can be detected (look up Weber's Law). 2) Sensory magnitude Above absolute threshold, there is a range of stimulus intensity levels which generates corresponding variations in sensory magnitude, providing valuable information (eg. proximity, force). The variation in sensory magnitude with stimulus intensity is not linear (look up Stevens' Power Law). 3) Adaptation Sensitivity must be matched to the physical stimulation available. Extreme sensitivity would be undesirable (eg. itching, deafening). Lack of sensitivity is obviously also undesirable. All modalities have the ability to shift their operating range ie. shift the range of physical intensity levels which generate a response. This allows us to adapt to prevailing environmental conditions and remain sensitive to change (light and noise level, skin stimulation). Within modalities, many subtle adaptation effects can also be generated, which tell us a lot about how the system operates. 4. Coverage of the senses in this course Vision will receive the most coverage, followed by hearing. The other senses will be covered in much less detail. Why? Because we know most about vision, and because it is the most important sense in several respects: 1) It has the greatest range of operation. 2) Cortical areas devoted entirely to vision cover about 60% of the total cortical surface (in primates). 3) Experiments demonstrate that when visual information is set into conflict with other senses, vision dominates eg. McGurk effect, ventriloquism, Lee and Aronson (1974), Rock and Harris (1967). PERCEPTION TOPIC NOTES: Touch and balance 1. Touch 1) Physiology Our sense of touch is based on a set of receptors which respond to deformation of tissue. There are four basic types: - Meissner corpuscles (most superficial, punctate) - Merkel discs - Ruffini endings - Pacinian corpuscles (deepest, diffuse) The type of the receptor affects the adaptive properties of its nerve fibre (corpuscles tend to give transient responses), and its location affects the fibre's spatial properties (punctate vs. diffuse). In addition, there is a network of free nerve endings (with no end receptor) below the skin surface and wrapped around the base of hair follicles, which respond to slight bending of the hair. The afferent fibres from receptors enter the spinal cord. Some connect with motor neurons which travel back to muscles in the body region where the afferent fibres originated. This in-out circuit mediates reflex reactions. Signals from other fibres are relayed to the brain (lemniscal pathway), where they arrive eventually in the somatosensory cortex. The cortical surface is arranged in an orderly way, with some body areas covering more cortical surface than others (an property known as cortical magnification). 2) Perception Quantitative aspects Our sense of touch differs markedly in its sensitivity and in its acuity in different body regions. Sensitivity is highest at the lips and fingertips, and lowest in the back and stomach. Similarly, two-point acuity is only 2mm on the finger, 30mm on the forearm, and 70mm on the back. This variation in response corresponds with the variation in cortical area devoted to different body parts. Qualitative aspects Our sense of touch varies qualitatively - we can perceive roughness, pressure, warmth, and pain. Early theories proposed that different receptors were associated with different sensory qualities, but experiments have not supported them (some investigators mapped sensory spots on their skin and then dissected it to find what receptors were underneath). A single event will generate responses in several receptor types simultaneously. Our perception of the event arises from a combination of all responses. 2. Balance The vestibular sense provides information about the head's attitude relative to gravitational vertical, which is used to maintain posture, stabilise eye position, and compensate for image motion introduced by head movement. Unlike other senses, the information generated by the vestibular sense does not usually impinge on consciousness unless unusual or violent body movements are involved (eg. abrupt halt after spinning). Individuals who suffer loss of vestibular function (due to toxic drugs or disease) are not aware of an obvious deficit, but they have difficulty in maintaining balance on uneven or compliant surfaces, and experience visual disturbance (movement of the visual field) during irregular head movement (eg. travelling over uneven surfaces). 1) Physiology The vestibular apparatus (about the size of a pea) contains three fluid-filled curved tubes (semicircular ducts) at right-angles to each other. Each duct contains a sheet of sensory hair cells (cilia) stretched across it to form a diaphragm. The cilia are connected to sensory cells which respond to deflection of the cilia. The three ducts are arranged so that angular acceleration of the head in any plane will deflect at least one set of cilia, and so generate a sensory response. The vestibular afferents terminate primarily in the vestibular nucleus, which also receives information from joint receptors and from the eyes. Complex interconnections are made with other sub-cortical brain structures, such as the cerebellum, and a small area of the cortex receives projections from the vestibular nucleus (via the thalamus as usual). The complex sub-cortical processing and relatively small cortical projection probably explains why vestibular signals have little conscious representation. However, we do have some conscious awareness of body movement, and direct brain stimulation in the appropriate area evokes sensations of body rotation and displacement. 2) Perception It is very difficult to study the vestibular sense in isolation from other senses, because there are many non-vestibular cues to orientation which must be excluded. Apart from vision, pressure receptors in supporting tissue, joint position receptors, and muscle feedback all give information about forces acting on the body. Elaborate precautions are needed, such as total immersion in water, so instead most studies examine the interactions between vestibular and non-vestibular sensations. The clearest example of this interaction is motion sickness, characterised by nausea and vomiting, which is thought to arise from a mismatch of sensory cues from vestibular and non-vestibular senses. For example, the movement of ships or planes can generate vestibular signals which are not accompanied by visual information about the movement. The problem is worsened by the tendency for the changes in direction and magnitude of acceleration to be abnormally
Recommended publications
  • Meta-Analytic Connectivity Modeling of Brodmann Area 37
    Florida International University FIU Digital Commons Nicole Wertheim College of Nursing and Health Nicole Wertheim College of Nursing and Health Sciences Sciences 12-17-2014 Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardilla Department of Communication Sciences and Disorders, Florida International University, [email protected] Byron Bernal Miami Children's Hospital Monica Rosselli Florida Atlantic University Follow this and additional works at: https://digitalcommons.fiu.edu/cnhs_fac Part of the Physical Sciences and Mathematics Commons Recommended Citation Ardilla, Alfredo; Bernal, Byron; and Rosselli, Monica, "Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37" (2014). Nicole Wertheim College of Nursing and Health Sciences. 1. https://digitalcommons.fiu.edu/cnhs_fac/1 This work is brought to you for free and open access by the Nicole Wertheim College of Nursing and Health Sciences at FIU Digital Commons. It has been accepted for inclusion in Nicole Wertheim College of Nursing and Health Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Hindawi Publishing Corporation Behavioural Neurology Volume 2015, Article ID 565871, 14 pages http://dx.doi.org/10.1155/2015/565871 Research Article Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardila,1 Byron Bernal,2 and Monica Rosselli3 1 Department of Communication Sciences and Disorders, Florida International University, Miami, FL 33199, USA 2Radiology Department and Research Institute, Miami Children’s Hospital, Miami, FL 33155, USA 3Department of Psychology, Florida Atlantic University, Davie, FL 33314, USA Correspondence should be addressed to Alfredo Ardila; [email protected] Received 4 November 2014; Revised 9 December 2014; Accepted 17 December 2014 Academic Editor: Annalena Venneri Copyright © 2015 Alfredo Ardila et al.
    [Show full text]
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • Prosopagnosia by B
    J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects.
    [Show full text]
  • Disorders of the Visual System in Alzheimer's Disease
    © 1990 Raven Press, Ltd.. New York Disorders of the Visual System in Alzheimer's Disease Mario F. Mendez, M.D., Robert L. Tomsak, M.D., Ph.D., and Bernd Remler, M.D. Alzheimer's disease (AD) is associated with distur­ Alzheimer's disease (AD) is the most prevalent bances in basic visual, complex visual, and oculomotor form of dementia affecting greater than 2.5 million functions. The broad range of visual system disorders in AD may result from the concentration of neuropathol­ people in the U.S., with the numbers expected to ogy in visual association cortex and optic nerves in this double by the year 2040 (1). Despite the absence of disease. AD patients and their caregivers frequently re­ a clinical test for AD, the recent establishment of port visuospatial difficulties in these patients. Examina­ highly accurate clinical criteria permit a more pre­ tion of the visual system in AD may reveal visual field cise evaluation of the deficits associated with this deficits, prolonged visual evoked potentials, depressed contrast sensitivities, and abnormal eye movement re­ disorder (2-4) (see Table 1). In addition to the cordings. Complex visual disturbances include construc­ usual memory and other cognitive deficits, AD pa­ tional and visuoperceptual abnormalities, spatial agno­ tients have disturbances in basic visual, complex sia and Balint's syndrome, environmental disorienta­ visual, and oculomotor functions, and AD patients tion, visual agnosia, facial identification problems, and in greater numbers are undergoing more thorough visual hallucinations. The purpose of this article is to review the spectrum of visual system disturbances evaluations of their visual systems (4-8).
    [Show full text]
  • Visual Perception
    Visual Perception Visual perception is the ability to interpret the surrounding environment by processing visual information. The visual system allows someone to acquire, interpret, select, and organize sensory information through the eyes. Signs and Symptoms of Decreased Visual Perception Trouble sequencing steps during activities of daily living (ADLs), such as bathing, dressing, grooming tasks Difficulty writing, drawing, copying, or constructing designs Difficulty routing in the environment Difficulty finding something in a crowded area Impact of Decreased Visual Perception on Daily Function Decreased safety awareness Decreased independence with activities of daily living (ADLs) Confusion of left vs. right Confusion of likes vs. differences Common Visual Perceptual Disturbances Following a head injury, an individual can have a variety of visual perceptual deficits which can directly affect their level of function and independence. The following define different categories of visual perception: Body Image/Body Scheme o Body Image: The visual and mental image of one’s body o Body Scheme: Regulates the position of different body parts on one’s body Somatognosia: Lack of awareness of body structure and failure to recognize one’s body parts in relation to one another Right-Left Discrimination: Ability to understand left versus right Unilateral Neglect: Inability to integrate and use perceptions from the left side of the body or environment. 1 Visual Perception Spatial Relations: Perception of the position of two or more objects in relation to self and each other Figure Ground Discrimination: Ability to differentiate between the foreground and background Position in Space: Ability to interpret concepts of in-out, up-down, front-back Topographical Orientation: Ability to understand and remember relationships of places to one another Apraxias o Most often due to a lesion located in the left hemisphere of the brain, typically in the frontal or parietal lobes.
    [Show full text]
  • Sensation and Perception
    Sensation and Perception OUTLINE OF RESOURCES Introducing Sensation and Perception Podcast/Lecture/Discussion Topic: Person Perception (p. 3) UPDATED Basic Principles of Sensation and Perception Lecture/Discussion Topics: Sensation Versus Perception (p. 4) Top-Down Processing (p. 5) “Thin-Slicing” (p. 6) Classroom Exercises: A Scale to Assess Sensory-Processing Sensitivity (p. 6) UPDATED Human Senses Demonstration Kits (p. 6) UPDATED Classroom Exercises/Student Projects: The Wundt-Jastrow Illusion (p. 4) LaunchPad Video: The Man Who Cannot Recognize Faces* Thresholds Lecture/Discussion Topics: Gustav Fechner and Psychophysics (p. 7) Subliminal Smells (p. 8) Subliminal Persuasion (p. 9) Applying Weber’s Law (p. 10) Student Projects: The Variability of the Absolute Threshold (p. 8) Understanding Weber’s Law (p. 9) Sensory Adaptation Student Project: Sensory Adaptation (p. 10) UPDATED Classroom Exercises: Eye Movements (p. 10) Sensory Adaptation in the Marketplace (p. 11) Perceptual Set Lecture/Discussion Topic: Do Red Objects Feel Warmer or Colder Than Blue Objects? (p. 11) NEW Classroom Exercises: Perceptual Set (p. 11) UPDATED Perceptual Set and Gender Stereotypes (p. 12) Context Effects (see also Brightness Contrast, p. 22) Lecture/Discussion Topic: Context and Perception (p. 13) Vision: Sensory and Perceptual Processing Classroom Exercise/Student Project: Physiology of the Eye—A CD-ROM for Teaching Sensation and Perception (p. 13) LaunchPad Video: Vision: How We See* The Eye and the Stimulus Input Lecture/Discussion Topic:Classroom as Eyeball (p. 13) Student Projects: Color the Eyeball (p. 13) NEW Locating the Retinal Blood Vessels (p. 13) Student Projects/Classroom Exercises: Rods, Cones, and Color Vision (p. 14) UPDATED Locating the Blind Spot (p.
    [Show full text]
  • Neuropsychiatry Review Series: Disorders of Visual Perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani
    Neuropsychiatry Review series: Disorders of Visual perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani To cite this version: Dominic Ffytche, Jan Dirk Blom, Marco Catani. Neuropsychiatry Review series: Disorders of Visual perception.. Journal of Neurology, Neurosurgery and Psychiatry, BMJ Publishing Group, 2010, 81 (11), pp.1280. 10.1136/jnnp.2008.171348. hal-00587980 HAL Id: hal-00587980 https://hal.archives-ouvertes.fr/hal-00587980 Submitted on 22 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Disorders of visual perception Dr Dominic H ffytche1,4* Dr JD Blom2,3 4 Dr M Catani 1 Department of Old Age Psychiatry, Institute of Psychiatry, King’s College London, UK 2 Parnassia Bavo Group, The Hague, the Netherlands 3 Department of Psychiatry, University of Groningen, Groningen, the Netherlands 4 Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, UK *Address for Correspondence Dr D H ffytche Department of Old Age Psychiatry, Institute of Psychiatry PO70, King’s College
    [Show full text]
  • Apraxia, Neglect, and Agnosia
    REVIEW ARTICLE 07/09/2018 on SruuCyaLiGD/095xRqJ2PzgDYuM98ZB494KP9rwScvIkQrYai2aioRZDTyulujJ/fqPksscQKqke3QAnIva1ZqwEKekuwNqyUWcnSLnClNQLfnPrUdnEcDXOJLeG3sr/HuiNevTSNcdMFp1i4FoTX9EXYGXm/fCfl4vTgtAk5QA/xTymSTD9kwHmmkNHlYfO by https://journals.lww.com/continuum from Downloaded Apraxia, Neglect, Downloaded CONTINUUM AUDIO INTERVIEW AVAILABLE and Agnosia ONLINE from By H. Branch Coslett, MD, FAAN https://journals.lww.com/continuum ABSTRACT PURPOSEOFREVIEW:In part because of their striking clinical presentations, by SruuCyaLiGD/095xRqJ2PzgDYuM98ZB494KP9rwScvIkQrYai2aioRZDTyulujJ/fqPksscQKqke3QAnIva1ZqwEKekuwNqyUWcnSLnClNQLfnPrUdnEcDXOJLeG3sr/HuiNevTSNcdMFp1i4FoTX9EXYGXm/fCfl4vTgtAk5QA/xTymSTD9kwHmmkNHlYfO disorders of higher nervous system function figured prominently in the early history of neurology. These disorders are not merely historical curiosities, however. As apraxia, neglect, and agnosia have important clinical implications, it is important to possess a working knowledge of the conditions and how to identify them. RECENT FINDINGS: Apraxia is a disorder of skilled action that is frequently observed in the setting of dominant hemisphere pathology, whether from stroke or neurodegenerative disorders. In contrast to some previous teaching, apraxia has clear clinical relevance as it is associated with poor recovery from stroke. Neglect is a complex disorder with CITE AS: many different manifestations that may have different underlying CONTINUUM (MINNEAP MINN) mechanisms. Neglect is, in the author’s view, a multicomponent disorder 2018;24(3,
    [Show full text]
  • Visual Agnosia I
    Visual Agnosia I. Biran, MD, and H. B. Coslett, MD Address Clinical Variants Department of Neurology, University of Pennsylvania School of Medi- Visual agnosia can be specific to certain kinds of objects. cine, 3400 Spruce Street, Philadelphia, PA 19104, USA. Accordingly, there are agnosias for objects, agnosias for E-mail: [email protected] faces or “prosopagnosia,” agnosias for words or “pure Current Neurology and Neuroscience Reports 2003, 3:508–512 word blindness,” agnosias for colors, and agnosias for Current Science Inc. ISSN 1528–4042 Copyright © 2003 by Current Science Inc. the environment, including landmarks. Finally, the dis- order of simultanagnosia—an inability to “see” more than one object at a time—is often regarded as a type of The visual agnosias are an intriguing class of clinical phe- visual agnosia. nomena that have important implications for current theo- ries of high-level vision. Visual agnosia is defined as impaired Agnosia for objects object recognition that cannot be attributed to visual loss, Inability to recognize familiar objects is the most com- language impairment, or a general mental decline. At least mon of the agnostic syndromes. Patients are impaired in in some instances, agnostic patients generate an adequate naming regular objects and are often unable to describe internal representation of the stimulus but fail to recognize them or mimic their use. Object agnosias are further it. In this review, we begin by describing the classic works classified as either apperceptive (the percept is not fully related to the visual agnosias, followed by a description of constructed and, therefore, patients are unable to copy the major clinical variants and their occurrence in degener- drawings) or associative (the percept is relatively intact ative disorders.
    [Show full text]
  • Category Specific Semantic Impairments
    Brain (1984), 107, 829-854 CATEGORY SPECIFIC SEMANTIC IMPAIRMENTS by ELIZABETH K. WARRINGTON and T. SHALLICE (From the National Hospital, Queen Square, London WC1N 3BG) SUMMARY We report a quantitative investigation of the visual identification and auditory comprehension deficits of 4 patients who had made a partial recovery from herpes simplex encephalitis. Clinical observations had suggested the selective impairment and selective preservation of certain categories of visual stimuli. In all 4 patients a significant discrepancy between their ability to identify inanimate objects and inability to identify living things and foods was demonstrated. In 2 patients it was possible to compare visual and verbal modalities and the same pattern of dissociation was observed in both. For 1 patient, comprehension of abstract words was significantly superior to comprehension of concrete words. Consistency of responses was recorded within a modality in contrast to a much lesser degree of consistency between modalities. We interpret our findings in terms of category specificity in the organization of meaning systems that are also modality specific semantic systems. INTRODUCTION Neuropsychological and neurological data provide an important source of evidence on the cerebral organization of visual perception, in identifying not only the component processes in the attainment of a meaningful percept, but also the categories into which meaningful percepts are to be classified. It is now generally accepted that a failure of visual identification that cannot be accounted for by impaired sensory processes (or other confounding factors) can occur as a selective deficit. Not only can visual agnosic deficits at the level of perceptual analysis— apperceptive agnosia—be distinguished from those of semantic analysis—associa- tive agnosia—there is also evidence of differentiation at a semantic level.
    [Show full text]
  • Diovascular Reflexes, Comprising Forced Expiration Against Resistance (“Straining”), Followed by Release of the Resistance and Completion of Expiration
    V.qxd 9/28/05 10:49 PM Page 316 V Valsalva Maneuver The Valsalva maneuver is a simple test of autonomically-mediated car- diovascular reflexes, comprising forced expiration against resistance (“straining”), followed by release of the resistance and completion of expiration. The first phase produces impaired cardiac filling due to impaired venous return as a consequence of elevated intrathoracic pressure, with a fall in cardiac output and blood pressure, inducing peripheral vasoconstriction (sympathetic pathways) to maintain blood pressure. The second phase causes a transient overshoot in blood pres- sure as the restored cardiac output is ejected into a constricted circu- lation, followed by reflex slowing of heart rate. In autonomic (sympathetic) dysfunction, reflex vasoconstriction, blood pressure overshoot and bradycardia do not occur. The latter may be conveniently assessed by measuring R-R intervals in a prolonged ECG recording, an R-R interval ratio between the straining and release phases of less than 1.1 suggesting impaired baroreceptor response. Cross References Orthostatic hypotension Vegetative States The vegetative state is a clinical syndrome in which cognitive function is lost, due to neocortical damage (hence no awareness, response, speech), while vegetative (autonomic, respiratory) function is pre- served due to intact brainstem centres. Primitive postural and reflex limb movements may also be observed. The syndrome, also known as neocortical death, coma vigil, and the apallic syndrome, may be seen after extensive ischemic-hypoxic brain injury, for example following resuscitation after cardiac arrest, and needs to be distinguished from coma, akinetic mutism, and the locked-in syndrome. Persistent vegeta- tive state (PVS) is defined by persistence of this state for > 12 months (UK) or > 6 months (USA) after brain trauma, or > 6 months (UK) or > 3 months (USA) following brain anoxia.
    [Show full text]
  • Quantized Visual Awareness
    HYPOTHESIS AND THEORY ARTICLE published: 22 November 2013 doi: 10.3389/fpsyg.2013.00869 Quantized visual awareness W. A. Escobar* Department of Biology, Rollins Research Center, Emory University, Atlanta, GA, USA Edited by: The proposed model holds that, at its most fundamental level, visual awareness is Melanie Boly, Belgian National Fund quantized.That is to say that visual awareness arises as individual bits of awareness through for Scientific Research, USA the action of neural circuits with hundreds to thousands of neurons in at least the human Reviewed by: striate cortex. Circuits with specific topologies will reproducibly result in visual awareness Guido Hesselmann, Charité Campus Mitte, Germany that correspond to basic aspects of vision like color, motion, and depth. These quanta Melanie Boly, Belgian National Fund of awareness (qualia) are produced by the feedforward sweep that occurs through the for Scientific Research, USA geniculocortical pathway but are not integrated into a conscious experience until recurrent *Correspondence: processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to W. A. Escobar, Department of Biology, create a percept.The model proposed here has the potential to shift the focus of the search Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, for visual awareness to the level of microcircuits and these likely exist across the kingdom GA 30322, USA Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not e-mail: [email protected] only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.
    [Show full text]