Visual Agnosia I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meta-Analytic Connectivity Modeling of Brodmann Area 37
Florida International University FIU Digital Commons Nicole Wertheim College of Nursing and Health Nicole Wertheim College of Nursing and Health Sciences Sciences 12-17-2014 Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardilla Department of Communication Sciences and Disorders, Florida International University, [email protected] Byron Bernal Miami Children's Hospital Monica Rosselli Florida Atlantic University Follow this and additional works at: https://digitalcommons.fiu.edu/cnhs_fac Part of the Physical Sciences and Mathematics Commons Recommended Citation Ardilla, Alfredo; Bernal, Byron; and Rosselli, Monica, "Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37" (2014). Nicole Wertheim College of Nursing and Health Sciences. 1. https://digitalcommons.fiu.edu/cnhs_fac/1 This work is brought to you for free and open access by the Nicole Wertheim College of Nursing and Health Sciences at FIU Digital Commons. It has been accepted for inclusion in Nicole Wertheim College of Nursing and Health Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Hindawi Publishing Corporation Behavioural Neurology Volume 2015, Article ID 565871, 14 pages http://dx.doi.org/10.1155/2015/565871 Research Article Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardila,1 Byron Bernal,2 and Monica Rosselli3 1 Department of Communication Sciences and Disorders, Florida International University, Miami, FL 33199, USA 2Radiology Department and Research Institute, Miami Children’s Hospital, Miami, FL 33155, USA 3Department of Psychology, Florida Atlantic University, Davie, FL 33314, USA Correspondence should be addressed to Alfredo Ardila; [email protected] Received 4 November 2014; Revised 9 December 2014; Accepted 17 December 2014 Academic Editor: Annalena Venneri Copyright © 2015 Alfredo Ardila et al. -
Primary Progressive Aphasia and Kindred Disorders
Handbook of Clinical Neurology, Vol. 89 (3rd series) Dementias C. Duyckaerts, I. Litvan, Editors # 2008 Elsevier B.V. All rights reserved Primary progressive aphasias Chapter 54 Primary progressive aphasia and kindred disorders MARSEL MESULAM* AND SANDRA WEINTRAUB Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, Chicago, USA 54.1. Introduction Bub, 1997; Kertesz et al., 2000, 2002; Hillis, 2002, 2004; Grossman and Moore, 2005). Terms such as The existence of progressive aphasias has been known progressive nonfluent aphasia (PNFA), semantic for more than 100 years. Pick (1892, 1904), Se´rieux dementia, aphasic variant of frontotemporal dementia (1893), Franceschi (1908), and Rosenfeld (1909) were (FTD), temporal variant of frontotemporal lobar among the first to report such patients. The current resur- degeneration (FTLD), Gogi aphasia and progressive gence of interest in this condition can be traced to a 1982 aphasia have been used, mostly implicitly, to denote report of six patients with a slowly progressive aphasia variants of PPA (Neary et al., 1998; Miller et al., and to the subsequent delineation of the primary progres- 1999). We prefer the PPA term as a root diagnosis sive aphasia (PPA) syndrome (Mesulam, 1982, 1987, for two reasons: not all progressive aphasias fulfill 2007; Mesulam and Weintraub, 1992). the PPA criteria and not all PPA cases are caused According to currently accepted criteria, the PPA by FTLD pathology. The word “primary” is a key diagnosis is made in any patient in whom a language descriptor that emphasizes the selective salience of impairment (aphasia), caused by a neurodegenerative the language disturbance and the relative preservation disease (progressive), constitutes the most salient aspect of other cognitive domains at initial stages. -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
An Update on Semantic Dementia: Genetics, Imaging, and Pathology Ramon Landin-Romero1,2,3† , Rachel Tan1,2†, John R
Landin-Romero et al. Alzheimer's Research & Therapy (2016) 8:52 DOI 10.1186/s13195-016-0219-5 REVIEW Open Access An update on semantic dementia: genetics, imaging, and pathology Ramon Landin-Romero1,2,3† , Rachel Tan1,2†, John R. Hodges1,2,3 and Fiona Kumfor1,2,3* Abstract Progressive and relatively circumscribed loss of semantic knowledge, referred to as semantic dementia (SD) which falls under the broader umbrella of frontotemporal dementia, was officially identified as a clinical syndrome less than 50 years ago. Here, we review recent neuroimaging, pathological, and genetic research in SD. From a neuroimaging perspective, SD is characterised by hallmark asymmetrical atrophy of the anterior temporal pole and anterior fusiform gyrus, which is usually left lateralised. Functional magnetic resonance imaging (fMRI) studies have revealed widespread changes in connectivity, implicating the anterior temporal regions in semantic deficits in SD. Task-related fMRI have also demonstrated the relative preservation of frontal and parietal regions alongside preserved memory performance. In addition, recent longitudinal studies have demonstrated that, with disease progression, atrophy encroaches into the contralateral temporal pole and medial prefrontal cortices, which reflects emerging changes in behaviour and social cognition. Notably, unlike other frontotemporal dementia subtypes, recent research has demonstrated strong clinicopathological concordance in SD, with TDP43 type C as the most common pathological subtype. Moreover, an underlying genetic causeappearstoberelativelyrareinSD,withthemajorityof cases having a sporadic form of the disease. The relatively clear diagnosis, clinical course, and pathological homogeneity of SD make this syndrome a promising target for novel disease-modifying interventions. The development of neuroimaging markers of disease progression at the individual level is an important area of research for future studies to address, in order to assist with this endeavour. -
Prosopagnosia by B
J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects. -
What Is Semantic Dementia? a Cohort Study of Diagnostic Features and Clinical Boundaries
ORIGINAL CONTRIBUTION What Is Semantic Dementia? A Cohort Study of Diagnostic Features and Clinical Boundaries Andrew Kertesz, MD; Sarah Jesso, BA; Michal Harciarek, PhD; Mervin Blair, MA; Paul McMonagle, MD Objectives: To describe a large, clinically defined co- tions were frequent in SD (54.1%) but phonological er- hort of patients with semantic dementia (SD) that high- rors were absent, in contrast to progressive nonfluent lights important, sometimes overlooked features and to aphasia with the opposite pattern. All but 3 patients with compare it with similar entities. probable SD questioned the meaning of words. Patients with SD had significantly lower naming and comprehen- Design: Cohort study. sion scores, and their fluency was between progressive nonfluent aphasia and Alzheimer disease or behavioral Setting: A cognitive neurology clinic. frontotemporal dementia. Behavior was abnormal in 94.6% of patients with probable SD. Patients: A population of 48 patients clinically diag- nosed with SD was contrasted with 52 patients with pro- Conclusions: Semantic dementia is distinguishable from gressive nonfluent aphasia, 42 patients with a behav- other presentations of frontotemporal dementia and Alz- ioral variety of frontotemporal dementia, and 105 patients heimer disease, not only by fluent speech and impaired with Alzheimer disease on speech output characteris- tics, comprehension, naming, and repetition subtests of comprehension without loss of episodic memory, syn- the Western Aphasia Battery, the Frontal Behavioral In- tax, and phonology but also by empty, garrulous speech ventory, and other cognitive tests. Neuroimaging was vi- with thematic perseverations, semantic paraphasias, and sually analyzed, and 6 patients with SD had autopsy. poor category fluency. Questioning the meaning of words (eg, “What is steak?”) is an important diagnostic clue not Results: Of 37 patients with probable SD, 48.6% had se- seen in other groups, and behavior change is prevalent. -
The Visual System: Higher Visual Processing
The Visual System: Higher Visual Processing Primary visual cortex The primary visual cortex is located in the occipital cortex. It receives visual information exclusively from the contralateral hemifield, which is topographically represented and wherein the fovea is granted an extended representation. Like most cortical areas, primary visual cortex consists of six layers. It also contains, however, a prominent stripe of white matter in its layer 4 - the stripe of Gennari - consisting of the myelinated axons of the lateral geniculate nucleus neurons. For this reason, the primary visual cortex is also referred to as the striate cortex. The LGN projections to the primary visual cortex are segregated. The axons of the cells from the magnocellular layers terminate principally within sublamina 4Ca, and those from the parvocellular layers terminate principally within sublamina 4Cb. Ocular dominance columns The inputs from the two eyes also are segregated within layer 4 of primary visual cortex and form alternating ocular dominance columns. Alternating ocular dominance columns can be visualized with autoradiography after injecting radiolabeled amino acids into one eye that are transported transynaptically from the retina. Although the neurons in layer 4 are monocular, neurons in the other layers of the same column combine signals from the two eyes, but their activation has the same ocular preference. Bringing together the inputs from the two eyes at the level of the striate cortex provide a basis for stereopsis, the sensation of depth perception provided by binocular disparity, i.e., when an image falls on non-corresponding parts of the two retinas. Some neurons respond to disparities beyond the plane of fixation (far cells), while others respond to disparities in front of the plane of the fixation (near cells). -
Visual Perceptual Skills
Super Duper® Handy Handouts!® Number 168 Guidelines for Identifying Visual Perceptual Problems in School-Age Children by Ann Stensaas, M.S., OTR/L We use our sense of sight to help us function in the world around us. It helps us figure out if something is near or far away, safe or threatening. Eyesight, also know as visual perception, refers to our ability to accurately identify and locate objects in our environment. Visual perception is an important component of vision that contributes to the way we see and interpret the world. What Is Visual Perception? Visual perception is our ability to process and organize visual information from the environment. This requires the integration of all of the body’s sensory experiences including sight, sound, touch, smell, balance, and movement. Most children are able to integrate these senses by the time they start school. This is important because approximately 75% of all classroom learning is visual. A child with even mild visual-perceptual difficulties will struggle with learning in the classroom and often in other areas of life. How Are Visual Perceptual Problems Diagnosed? A child with visual perceptual problems may be diagnosed with a visual processing disorder. He/she may be able to easily read an eye chart (acuity) but have difficulty organizing and making sense of visual information. In fact, many children with visual processing disorders have good acuity (i.e., 20/20 vision). A child with a visual-processing disorder may demonstrate difficulty discriminating between certain letters or numbers, putting together age-appropriate puzzles, or finding matching socks in a drawer. -
AN OT's Toolbox : Making the Most out of Visual Processing and Motor Processing Skills
AN OT’s Toolbox : Making the Most out of Visual Processing and Motor Processing Skills Presented by Beth Kelley, OTR/L, MIMC FOTA 2012 By Definition Visual Processing Motor Processing is is the sequence of steps synonymous with Motor that information takes as Skills Disorder which is it flows from visual any disorder characterized sensors to cognitive by inadequate development processing.1 of motor coordination severe enough to restrict locomotion or the ability to perform tasks, schoolwork, or other activities.2 1. http://en.wikipedia.org/wiki/Visual_ processing 2. http://medical-dictionary.thefreedictionary.com/Motor+skills+disorder Visual Processing What is Visual Processing? What are systems involved with Visual Processing? Is Visual Processing the same thing as vision? Review general anatomy of the eye. Review general functions of the eye. -Visual perception and the OT’s role. -Visual-Motor skills and why they are needed in OT treatment. What is Visual Processing “Visual processing is the sequence of steps that information takes as it flows from visual sensors to cognitive processing1” 1. http://en.wikipedia.org/wiki/Visual_Processing What are the systems involved with Visual Processing? 12 Basic Processes are as follows: 1. Vision 2. Visual Motor Processing 3. Visual Discrimination 4. Visual Memory 5. Visual Sequential Memory 6. Visual Spatial Processing 7. Visual Figure Ground 8. Visual Form Constancy 9. Visual Closure 10. Binocularity 11.Visual Accommodation 12.Visual Saccades 12 Basic Processes are: 1. Vision The faculty or state of being able to see. The act or power of sensing with the eyes; sight. The Anatomy of Vision 6 stages in Development of the Vision system Birth to 4 months 4-6 months 6-8 months 8-12 months 1-2 years 2-3 years At birth babies can see patterns of light and dark. -
Identification & Intervention with Sensory Processing
An Introduction to Identification & Intervention for Children with Sensory Processing Difficulties EARLY CHILDHOOD MENTAL HEALTH INSTITUTE Location: University of Alaska Anchorage Date: May 13, 2009 Time: 8:30am to 12:00pm Jackie Brown, OTR/L Occupational Therapist Registered, Licensed Sensory Integration Certified Therapist #1602 Modulated and Advanced Therapeutic Listening Training All For Kids Pediatric Therapy Occupational Therapy/Physical Therapy Supervisor 8200 Homer Drive, Unit F Anchorage, AK 99518 Phone: (907) 345-0050 Email: [email protected] Website: www.allforkidsalaska.com Presentation Objectives WHAT IS IT? Define terms related to Sensory Processing Disorder (SPD). WHY IS IT IMPORTANT? Identify behaviors (signs and symptoms) associated with sensory processing difficulties. WHO DISCOVERED IT? WHERE HAVE WE BEEN? WHERE ARE WE GOING? Understand a brief history and look into current research. HOW DOES IT WORK? Identify the various sensory systems and their functions. WHAT DOES IT LOOK LIKE? Identify model of understand and describing Sensory Processing Disorders. WHEN DO I ACT and WHERE DO I GO FROM HERE? Identify when to refer a client to a specialist for a screening or evaluation. WHAT DO I DO NOW? Become familiar with simple intervention techniques to put into practice. What is Occupational Therapy? Occupational therapy is the scientifically based use of purposeful activity (or occupation) with individuals who are affected by physical injury or illness, psychosocial dysfunction, developmental or learning disabilities, or the aging process, in order to maximize independence, prevent disability, and promote health. WHAT IS SPD? What is Sensory Processing or Sensory Integration (SI)? Definitions The neurological process that organizes sensation form ones body and the environment and makes it possible to use the body effectively within the environment. -
THE CLINICAL ASSESSMENT of the PATIENT with EARLY DEMENTIA S Cooper, J D W Greene V15
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.081133 on 16 November 2005. Downloaded from THE CLINICAL ASSESSMENT OF THE PATIENT WITH EARLY DEMENTIA S Cooper, J D W Greene v15 J Neurol Neurosurg Psychiatry 2005;76(Suppl V):v15–v24. doi: 10.1136/jnnp.2005.081133 ementia is a clinical state characterised by a loss of function in at least two cognitive domains. When making a diagnosis of dementia, features to look for include memory Dimpairment and at least one of the following: aphasia, apraxia, agnosia and/or disturbances in executive functioning. To be significant the impairments should be severe enough to cause problems with social and occupational functioning and the decline must have occurred from a previously higher level. It is important to exclude delirium when considering such a diagnosis. When approaching the patient with a possible dementia, taking a careful history is paramount. Clues to the nature and aetiology of the disorder are often found following careful consultation with the patient and carer. A focused cognitive and physical examination is useful and the presence of specific features may aid in diagnosis. Certain investigations are mandatory and additional tests are recommended if the history and examination indicate particular aetiologies. It is useful when assessing a patient with cognitive impairment in the clinic to consider the following straightforward questions: c Is the patient demented? c If so, does the loss of function conform to a characteristic pattern? c Does the pattern of dementia conform to a particular pattern? c What is the likely disease process responsible for the dementia? An understanding of cognitive function and its anatomical correlates is necessary in order to ascertain which brain areas are affected. -
Oxford Handbooks Online
Anomia and Anomic Aphasia Oxford Handbooks Online Anomia and Anomic Aphasia: Implications for Lexical Processing Stacy M. Harnish The Oxford Handbook of Aphasia and Language Disorders (Forthcoming) Edited by Anastasia M. Raymer and Leslie Gonzalez-Rothi Subject: Psychology, Cognitive Neuroscience Online Publication Date: Jan DOI: 10.1093/oxfordhb/9780199772391.013.7 2015 Abstract and Keywords Anomia is a term that describes the inability to retrieve a desired word, and is the most common deficit present across different aphasia syndromes. Anomic aphasia is a specific aphasia syndrome characterized by a primary deficit of word retrieval with relatively spared performance in other language domains, such as auditory comprehension and sentence production. Damage to a number of cognitive and motor systems can produce errors in word retrieval tasks, only subsets of which are language deficits. In the cognitive and neuropsychological underpinnings section, we discuss the major processing steps that occur in lexical retrieval and outline how deficits at each of the stages may produce anomia. The neuroanatomical correlates section will include a review of lesion and neuroimaging studies of language processing to examine anomia and anomia recovery in the acute and chronic stages. The assessment section will highlight how discrepancies in performance between tasks contrasting output modes and input modalities may provide insight into the locus of impairment in anomia. Finally, the treatment section will outline some of the rehabilitation techniques for forms of anomia, and take a closer look at the evidence base for different aspects of treatment. Keywords: Anomia, Anomic aphasia, Word retrieval, Lexical processing Syndrome Description and Unique Characteristics The term anomia refers to the inability to retrieve a desired word, typically in the course of conversational sentence production.