Psy393: Cognitive „ Ventral Visual Pathway: “What” „ Disorders: the Agnosias Neuroscience „ Fmri Evidence „ Two Types of Object Recognition Prof

Total Page:16

File Type:pdf, Size:1020Kb

Psy393: Cognitive „ Ventral Visual Pathway: “What” „ Disorders: the Agnosias Neuroscience „ Fmri Evidence „ Two Types of Object Recognition Prof Object recognition: Overview Two visual pathways Psy393: Cognitive Ventral visual pathway: “What” Disorders: The Agnosias Neuroscience fMRI evidence Two types of object recognition Prof. Anderson Dorsal pathway: “Where” “action” Department of Psychology Perception II: Recognition Computational problems in Computational problems in object recognition object recognition What is it? Where is it? Where’s Waldo? Object constancy: Variability in sensory information Retinal position ? Viewing position Occlusion Lighting Dissociation of what and Two visual cortical pathways where in the monkey These problems to be solved are reflected Landmark and object discrimination task in the organization of the visual system (Pohl, 1973) Ventral “What” pathway Inferior longitudinal fasciculus Parietal lobe Dorsal “Where” pathway Where Superior longitudinal Temporal lobe fasciculus What 1 “What” pathway Ventral “What” pathway characteristics characteristics Anterior regions have large receptive fields Complex response profile Looking through a small Dissimilar to V1 small or big window Not simple orientation All include fovea Selectivity High definition Hands, Allows positional invariance faces etc large Dorsal “where” pathway Neuroimaging evidence for characteristics “what” and “where: Have large receptive fields Attend to change in objects or locations Minority (40%) foveal Objects Same objects Different location Majority are extrafoveal: Periphery Occipito-temporal Rods—> magnocellular—>dorsal pathway Locations Posterior parietal Disorders of the ventral visual Apperceptive agnosia pathway Agnosia: “without knowledge” Visual agnosia: vision w/out knowledge What its not Modality specific: Restricted to vision Not a memory disorder Not cortical blindness Item can be recognized Intact visual field through other modalities Not a basic deficit in processing visual Touch, sound, smell information Lissauer (1890’s) division Sensation is largely intact Apperceptive Associative Brightness, orientation, color, motion intact Category specific agnosia Prosopagnosia 2 Apperceptive agnosia: Apperceptive agnosia Behaviour Varying degrees of perceptual problems What it is Depends on lesion extent Difficulty in forming a “percept” (a mental Deficit in copying form impression of something based on the senses) Can’t perceive higher-order visual structure Visual information can’t be bound together Can’t integrate parts into whole No coherent percept Evidence for constancy: Apperceptive agnosia: Lateral occipital complex Behaviour (LOC) Higher levels of damage Likely locus of object constancy Problem in object constancy Reduction in fMRI response w/ repetition Retinal projection Invariance Size, location,viewpoint, illumination, occlusion Lighting No effect of occlusion Occlusion Associative agnosia: Associative agnosia Behaviour Can copy complex objects What its not Can perform perceptual grouping Can form reasonable “percepts” What it is Perceptual grouping intact Failure of object recognition Difficulty in accessing semantic representations from vision “psychic blindness” 3 Associative agnosia: Localization: Gradations in Behaviour impairment Can’t draw objects from memory Apperceptive Can’t name objects Posterior Not anomic Associative Anterior Can’t match by function Match by visual similarity Anterior to posterior lesion loci Evidence for hierarchical analysis Adjacent areas of cortex likely damaged Varying degrees of perceptual/gnostic problems Largely a problem in linking percepts with Always some degree of perceptual deficit Gradations rather than categorical differences semantics Category specific agnosia: Is there a region of the brain Prosopagnosia devoted to faces? Largely specific to faces Fusiform face area (FFA) Can distinguish between faces and objects Right middle fusiform gyrus especially Difficulty in distinguishing between faces responsive to faces relative to other Facial identification objects Across category Within category FFA Face identification and Are faces special? configural processing Why have an FFA? Face recognition depends on relationship Faces are a special object class shaped by between distinct features (nose, eyes, etc) evolutionary pressures What happens when relationships are Specialized module for their recognition disrupted? Face inversion effect Or within-category (subordinate level) discrimination? Depends upon special quality of object processing Can extend to other objects that require this type of special processing 4 Face identification and What does the face inversion configural processing effect tell us? Face recognition depends on relationship Face inversion effect Difficulty remembering/perceiving inverted relative to between distinct features (nose, eyes, etc) upright faces What happens when relationships are When upright: configural processing of subtle disrupted? relations between features When inverted: local processing of features Don’t notice configural violations Prosopagnosics perform equivalently to controls on inverted faces Impaired configural/holistic processing Intact analytic/local processing A deficit in configural rather than face processing? Two systems for object Configural processing recognition Are prosopagnosics impaired at configural Two types/qualities of object vision? processing, not just face processing? Dissociation and association amongst agnosic FFA and configural encoding syndromes “Greebles” Agnosia: general object recognition Train to recognize Alexia: specialized for word perception/reading individuals Prosopagnosia: specialized for face perception Evidence of configural processing “Greeble inversion effect” Independent Independent Experts but not novices Shared activate FFA Potentially not face specific Two systems for object Two systems for object recognition recognition Analytic Prosopagnosia and alexia are dissociable Analysis by parts But, rarely occur in isolation Can apply to faces Associated with object agnosia, but not always Configural When both present Holistic analysis Not a single case w/out object agnosia Can apply to objects Share common process needed for object recognition Alexia Prosopagnosia Object agnosia 5 Disorders of the dorsal pathway: Action Tactile agnosia Object recognition outside of the ventral visual Double dissociation stream Agnosia vs. optic ataxia 2 types Apperceptive Agnosia “apperceptive” Impaired perception Intact sensory discrimination Intact action Can’t form tactile percepts Appropriate reaching “associative” (tactile asymbolia) grasping Can form percepts Optic ataxia Texture, temperature weight, shape Intact perception Can’t retrieve meaning Impaired action Can be hand specific Eye Locus of damage Inappropriate saccades Somatosensory association Hand Impaired reaching/grasping cortex End of lecture 6.
Recommended publications
  • Sciencedirect.Com Sciencedirect
    cortex 89 (2017) 135e155 Available online at www.sciencedirect.com ScienceDirect Journal homepage: www.elsevier.com/locate/cortex Research report Agnosic vision is like peripheral vision, which is limited by crowding Francesca Strappini a,b,c, Denis G. Pelli d, Enrico Di Pace a and * Marialuisa Martelli a,b, a Department of Psychology, University of Rome La Sapienza, Rome, Italy b Neuropsychology Research Centre, IRCCS Foundation Hospital Santa Lucia, Rome, Italy c Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel d Department of Psychology and Center for Neural Science, New York University, New York, NY, USA article info abstract Article history: Visual agnosia is a neuropsychological impairment of visual object recognition despite Received 23 April 2014 near-normal acuity and visual fields. A century of research has provided only a rudimen- Reviewed 14 July 2014 tary account of the functional damage underlying this deficit. We find that the object- Revised 24 October 2014 recognition ability of agnosic patients viewing an object directly is like that of normally- Accepted 13 January 2017 sighted observers viewing it indirectly, with peripheral vision. Thus, agnosic vision is Action editor Jason Barton like peripheral vision. We obtained 14 visual-object-recognition tests that are commonly Published online 1 February 2017 used for diagnosis of visual agnosia. Our “standard” normal observer took these tests at various eccentricities in his periphery. Analyzing the published data of 32 apperceptive Keywords: agnosia patients and a group of 14 posterior cortical atrophy (PCA) patients on these tests, Visual agnosia we find that each patient's pattern of object recognition deficits is well characterized by one Crowding number, the equivalent eccentricity at which our standard observer's peripheral vision is like Object recognition the central vision of the agnosic patient.
    [Show full text]
  • Meta-Analytic Connectivity Modeling of Brodmann Area 37
    Florida International University FIU Digital Commons Nicole Wertheim College of Nursing and Health Nicole Wertheim College of Nursing and Health Sciences Sciences 12-17-2014 Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardilla Department of Communication Sciences and Disorders, Florida International University, [email protected] Byron Bernal Miami Children's Hospital Monica Rosselli Florida Atlantic University Follow this and additional works at: https://digitalcommons.fiu.edu/cnhs_fac Part of the Physical Sciences and Mathematics Commons Recommended Citation Ardilla, Alfredo; Bernal, Byron; and Rosselli, Monica, "Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37" (2014). Nicole Wertheim College of Nursing and Health Sciences. 1. https://digitalcommons.fiu.edu/cnhs_fac/1 This work is brought to you for free and open access by the Nicole Wertheim College of Nursing and Health Sciences at FIU Digital Commons. It has been accepted for inclusion in Nicole Wertheim College of Nursing and Health Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Hindawi Publishing Corporation Behavioural Neurology Volume 2015, Article ID 565871, 14 pages http://dx.doi.org/10.1155/2015/565871 Research Article Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardila,1 Byron Bernal,2 and Monica Rosselli3 1 Department of Communication Sciences and Disorders, Florida International University, Miami, FL 33199, USA 2Radiology Department and Research Institute, Miami Children’s Hospital, Miami, FL 33155, USA 3Department of Psychology, Florida Atlantic University, Davie, FL 33314, USA Correspondence should be addressed to Alfredo Ardila; [email protected] Received 4 November 2014; Revised 9 December 2014; Accepted 17 December 2014 Academic Editor: Annalena Venneri Copyright © 2015 Alfredo Ardila et al.
    [Show full text]
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • Prosopagnosia by B
    J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects.
    [Show full text]
  • THE CLINICAL ASSESSMENT of the PATIENT with EARLY DEMENTIA S Cooper, J D W Greene V15
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.081133 on 16 November 2005. Downloaded from THE CLINICAL ASSESSMENT OF THE PATIENT WITH EARLY DEMENTIA S Cooper, J D W Greene v15 J Neurol Neurosurg Psychiatry 2005;76(Suppl V):v15–v24. doi: 10.1136/jnnp.2005.081133 ementia is a clinical state characterised by a loss of function in at least two cognitive domains. When making a diagnosis of dementia, features to look for include memory Dimpairment and at least one of the following: aphasia, apraxia, agnosia and/or disturbances in executive functioning. To be significant the impairments should be severe enough to cause problems with social and occupational functioning and the decline must have occurred from a previously higher level. It is important to exclude delirium when considering such a diagnosis. When approaching the patient with a possible dementia, taking a careful history is paramount. Clues to the nature and aetiology of the disorder are often found following careful consultation with the patient and carer. A focused cognitive and physical examination is useful and the presence of specific features may aid in diagnosis. Certain investigations are mandatory and additional tests are recommended if the history and examination indicate particular aetiologies. It is useful when assessing a patient with cognitive impairment in the clinic to consider the following straightforward questions: c Is the patient demented? c If so, does the loss of function conform to a characteristic pattern? c Does the pattern of dementia conform to a particular pattern? c What is the likely disease process responsible for the dementia? An understanding of cognitive function and its anatomical correlates is necessary in order to ascertain which brain areas are affected.
    [Show full text]
  • Visual Problems After Brain Injury
    Visual problems after brain injury As a charity, we rely on donations from people like you to continue providing free information to people affected by brain injury. Donate today: www.headway.org.uk/donate Introduction Vision is the skill that allows us to see the world around us. When we look at the world, a complex series of processes takes place between the eyes and the brain. The eyes take in the information, while the brain (which is connected to the eyes by a nerve called the optic nerve) is responsible for processing and interpreting it. Through this system we are able to see things such as colours, shapes, movement, objects and people. When the brain is injured, the ability to interpret visual information can be affected in different ways. This factsheet has been written to explain how brain injury can affect vision and how to seek professional support with these issues. Tips for coping with visual problems are also offered. Words in bold are defined in a glossary at the end of the factsheet. What is vision? There are lots of different aspects of vision. Some of the things the brain needs to do to decode information that it receives from the eyes are: • process the shape and colour of objects • process and merge information received from both eyes • recall information from memory to recognise objects or places • process the movement of objects • process the location and position of an object in space • process information across the visual field (including peripheral vision) Generally, different parts of the brain are responsible for processing these different aspects of vision.
    [Show full text]
  • Disorders of the Visual System in Alzheimer's Disease
    © 1990 Raven Press, Ltd.. New York Disorders of the Visual System in Alzheimer's Disease Mario F. Mendez, M.D., Robert L. Tomsak, M.D., Ph.D., and Bernd Remler, M.D. Alzheimer's disease (AD) is associated with distur­ Alzheimer's disease (AD) is the most prevalent bances in basic visual, complex visual, and oculomotor form of dementia affecting greater than 2.5 million functions. The broad range of visual system disorders in AD may result from the concentration of neuropathol­ people in the U.S., with the numbers expected to ogy in visual association cortex and optic nerves in this double by the year 2040 (1). Despite the absence of disease. AD patients and their caregivers frequently re­ a clinical test for AD, the recent establishment of port visuospatial difficulties in these patients. Examina­ highly accurate clinical criteria permit a more pre­ tion of the visual system in AD may reveal visual field cise evaluation of the deficits associated with this deficits, prolonged visual evoked potentials, depressed contrast sensitivities, and abnormal eye movement re­ disorder (2-4) (see Table 1). In addition to the cordings. Complex visual disturbances include construc­ usual memory and other cognitive deficits, AD pa­ tional and visuoperceptual abnormalities, spatial agno­ tients have disturbances in basic visual, complex sia and Balint's syndrome, environmental disorienta­ visual, and oculomotor functions, and AD patients tion, visual agnosia, facial identification problems, and in greater numbers are undergoing more thorough visual hallucinations. The purpose of this article is to review the spectrum of visual system disturbances evaluations of their visual systems (4-8).
    [Show full text]
  • DISORDERS of AUDITORY PROCESSING: EVIDENCE for MODULARITY in AUDITION Michael R
    DISORDERS OF AUDITORY PROCESSING: EVIDENCE FOR MODULARITY IN AUDITION Michael R. Polster and Sally B. Rose (Psychology Department, Victoria University of Wellington, Wellington, New Zealand) ABSTRACT This article examines four disorders of auditory processing that can result from selective brain damage (cortical deafness, pure word deafness, auditory agnosia and phonagnosia) in an effort to derive a plausible functional and neuroanatomical model of audition. The article begins by identifying three possible reasons why models of auditory processing have been slower to emerge than models of visual processing: neuroanatomical differences between the visual and auditory systems, terminological confusions relating to auditory processing disorders, and technical factors that have made auditory stimuli more difficult to study than visual stimuli. The four auditory disorders are then reviewed and current theories of auditory processing considered. Taken together, these disorders suggest a modular architecture analogous to models of visual processing that have been derived from studying neurological patients. Ideas for future research to test modular theory more fully are presented. Key words: auditory processing, modularity, review INTRODUCTION Neuropsychological investigations of patients suffering from brain damage have flourished in recent years and helped to produce more detailed and neuroanatomically plausible models of several aspects of cognitive function. For example, models of language processing are often closely aligned with studies of aphasia (e.g., Caplan, 1987; Goodglass, 1993) and models of memory draw heavily upon studies of amnesia (e.g., Schacter and Tulving, 1994; Squire, 1987). Most of this research has relied on visually presented materials, and as a result visual processing disorders tend to be more well-documented and better understood than their auditory counterparts.
    [Show full text]
  • Transient Gerstmann Syndrome As Manifestation of Stroke Case Report and Brief Literature Review
    Dement Neuropsychol 2017 June;11(2):202-205 Case Report doi: 10.1590/1980-57642016dn11-020013 Transient Gerstmann syndrome as manifestation of stroke Case report and brief literature review Rafael Batista João1, Raquel Mattos Filgueiras2, Marcelo Lucci Mussi3, João Eliezer Ferri de Barros4 ABSTRACT. Gerstmann Syndrome (GS) is a rare neurological condition described as a group of cognitive changes corresponding to a tetrad of symptoms comprising agraphia, acalculia, right-left disorientation and finger agnosia. It is known that some specific brain lesions may lead to such findings, particularly when there is impairment of the angular gyrus and adjacent structures. In addition, the possibility of disconnection syndrome should be considered in some cases. The purpose of this article is to report a case of a young, cardiac patient, non-adherent to treatment, who presented with a stroke in which transient clinical symptoms were compatible with the tetrad of GS. The case report is followed by a discussion and brief review of the relevant literature. Key words: Gerstmann syndrome, disconnection syndrome, insular cortex, parietal lobe, frontal lobe. SÍNDROME DE GERSTMANN TRANSITÓRIA COMO MANIFESTAÇÃO DE ACIDENTE VASCULAR ENCEFÁLICO: RELATO DE CASO E BREVE REVISÃO DE LITERATURA RESUMO. A síndrome de Gerstmann (SG) é uma condição neurológica rara, caracterizada por um grupo de alterações cognitivas que correspondem a uma tétrade composta por agrafia, acalculia, desorientação direita-esquerda e agnosia para dedos. Sabe-se que certas lesões encefálicas específicas podem levar a tais achados, particularmente quando ocorre acometimento do giro angular e estruturas adjacentes. Além disso, a possibilidade de síndrome de desconexão deve ser considerada em alguns casos.
    [Show full text]
  • Visual Perception
    Visual Perception Visual perception is the ability to interpret the surrounding environment by processing visual information. The visual system allows someone to acquire, interpret, select, and organize sensory information through the eyes. Signs and Symptoms of Decreased Visual Perception Trouble sequencing steps during activities of daily living (ADLs), such as bathing, dressing, grooming tasks Difficulty writing, drawing, copying, or constructing designs Difficulty routing in the environment Difficulty finding something in a crowded area Impact of Decreased Visual Perception on Daily Function Decreased safety awareness Decreased independence with activities of daily living (ADLs) Confusion of left vs. right Confusion of likes vs. differences Common Visual Perceptual Disturbances Following a head injury, an individual can have a variety of visual perceptual deficits which can directly affect their level of function and independence. The following define different categories of visual perception: Body Image/Body Scheme o Body Image: The visual and mental image of one’s body o Body Scheme: Regulates the position of different body parts on one’s body Somatognosia: Lack of awareness of body structure and failure to recognize one’s body parts in relation to one another Right-Left Discrimination: Ability to understand left versus right Unilateral Neglect: Inability to integrate and use perceptions from the left side of the body or environment. 1 Visual Perception Spatial Relations: Perception of the position of two or more objects in relation to self and each other Figure Ground Discrimination: Ability to differentiate between the foreground and background Position in Space: Ability to interpret concepts of in-out, up-down, front-back Topographical Orientation: Ability to understand and remember relationships of places to one another Apraxias o Most often due to a lesion located in the left hemisphere of the brain, typically in the frontal or parietal lobes.
    [Show full text]
  • Sensation and Perception
    Sensation and Perception OUTLINE OF RESOURCES Introducing Sensation and Perception Podcast/Lecture/Discussion Topic: Person Perception (p. 3) UPDATED Basic Principles of Sensation and Perception Lecture/Discussion Topics: Sensation Versus Perception (p. 4) Top-Down Processing (p. 5) “Thin-Slicing” (p. 6) Classroom Exercises: A Scale to Assess Sensory-Processing Sensitivity (p. 6) UPDATED Human Senses Demonstration Kits (p. 6) UPDATED Classroom Exercises/Student Projects: The Wundt-Jastrow Illusion (p. 4) LaunchPad Video: The Man Who Cannot Recognize Faces* Thresholds Lecture/Discussion Topics: Gustav Fechner and Psychophysics (p. 7) Subliminal Smells (p. 8) Subliminal Persuasion (p. 9) Applying Weber’s Law (p. 10) Student Projects: The Variability of the Absolute Threshold (p. 8) Understanding Weber’s Law (p. 9) Sensory Adaptation Student Project: Sensory Adaptation (p. 10) UPDATED Classroom Exercises: Eye Movements (p. 10) Sensory Adaptation in the Marketplace (p. 11) Perceptual Set Lecture/Discussion Topic: Do Red Objects Feel Warmer or Colder Than Blue Objects? (p. 11) NEW Classroom Exercises: Perceptual Set (p. 11) UPDATED Perceptual Set and Gender Stereotypes (p. 12) Context Effects (see also Brightness Contrast, p. 22) Lecture/Discussion Topic: Context and Perception (p. 13) Vision: Sensory and Perceptual Processing Classroom Exercise/Student Project: Physiology of the Eye—A CD-ROM for Teaching Sensation and Perception (p. 13) LaunchPad Video: Vision: How We See* The Eye and the Stimulus Input Lecture/Discussion Topic:Classroom as Eyeball (p. 13) Student Projects: Color the Eyeball (p. 13) NEW Locating the Retinal Blood Vessels (p. 13) Student Projects/Classroom Exercises: Rods, Cones, and Color Vision (p. 14) UPDATED Locating the Blind Spot (p.
    [Show full text]
  • 2-2-Patterns Neuropsychological Data Agnosia Patient GS
    Neuropsychological Data • Agnosia • Term coined by Sigmund Freud 2-2-patterns • From the Greek word for “lack of knowledge” • The inability to recognize objects when using a given sense (e.g. vision), even though that sense is basically intact (Nolte, 1999) Agnosia Patient GS • Sensory abilities intact • Language normal • Usually involves damage to the occipito-parietal • Unable to name objects pathway Agnosia Prosopagnosia • Apperceptive • Specific inability to recognize faces – Object recognition failure due to perceptual processing – Difficulty recognizing pictures w/deleted segments • Are faces and other objects in the world – Unable to utilize top-down information for pattern recognition represented in fundamentally different • Associative – Perceptual processing intact but subject cannot use information ways in memory? to recognize objects – Can draw objects but not say what they are • Does face-memory depend on – Language otherwise intact fundamentally different brain systems? – Often don’t know other things about object (how it’s used, etc.) 1 Are Faces Special? Are Faces Special? • Subjects presented with a face and asked to represent a face-part • Houses: similar performance for parts & wholes • Subjects presented with a house and asked to • Faces: whole-object advantage represent a house-part Are Faces Special? Models of Pattern Recognition • Template Models • Feature Models • Prototype Models • Neural Network Models • Objects represented in parts and holistically • Faces represented holistically Word Superiority Effect IAC
    [Show full text]