Euconulus Alderi Gray a Land Snail
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Insects and Molluscs, According to the Procedures Outlined Below
Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying -
Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac -
Population Dynamics and Spatial Dist'ribution of Tlle Terrestrial Snail Ovachlamys Fulgens (Stylommatopbora: Helicarionidae) in a Tropical Environment
Rev. Biol. Trop., 48(1): 71-87, 2000 www.ucr.ac.cr Www.ots.ac.cr www.ots.duke.edu Population dynamics and spatial dist'ribution of tlle terrestrial snail Ovachlamys fulgens (Stylommatopbora: Helicarionidae) in a tropical environment Zaidett Barrientos Departamento de Malacología, Instituto Nacional de Biodiversidad (INBio), Apdo. 22-3100 Sto. Domingo, Heredia, Costa Rica. Fax (506)2442816, E-mail: [email protected] Received 8-VI-1999. Corrected 9-XI-1999. Accepted 20-XI-1999. Abstract: The introduced snail Ovachlamys fulgens (Stylommatophora: Heliearionidae) oeeurs on cultivated land habitats in Costa Rica, where its macrodistribution seems to be limited by annual mean temperature (20 - 27.6°C) and annual preeipitation (1 530 - 3 034 and 3 420 - 8 000 mm, with no more than six dry months). This species can be found in ¡itter and on vegetation up to 70 cm tal\. Randomquadrat field sampling was done in leaf litter and understory plants every three months for a total of five dates inCentral Costa Rica. At least 150 plots of 2Sx25 cm were analyzed on each date. Abundance of living specimens andeggs was positively correlated with (1) litter abundance anddepth, (2) litter and soil humidity, (3) relative humidity and (4) earlymoming tempera ture (6:30 AM), and negatively correlated with temperature later in the moming (10:00 AM). Besides these fac tors, living snail abundance was eorrelated with thickness of the herbaeeous vegetation and with the oeeurrence of fueca elephantiphes (in litter and understory). Egg abundanee was also correlated with the sampling date, apparentlybecause of changes in humídity. The correlationpattem of shell abundance was opposite to that of liv ing specimens. -
Biological Evaluation REACH 3MC II Fiber Optic Project Merit Network, Inc
Biological Evaluation REACH 3MC II Fiber Optic Project Merit Network, Inc. United States Department of Agriculture Hiawatha National Forest April 2012 Forest Service Eastern Region Hiawatha National Forest 2 Biological Evaluation REACH 3MC II Fiber Optic Project Merit Network, Inc. Hiawatha National Forest April 2012 /s/ Andrea Kline Prepared By: ____________________________ Andrea Kline Merit Network , Inc. Date: ___5/3/12___ /s/ Derek Huebner /s/ Stephanie Blumer Reviewed By: ____________________________ Reviewed By: _______________________________ Derek Huebner Stephanie Blumer Wildlife Biologist Botanist Date: _____5/7/12___ Date: __5/7/12_______ The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). The USDA is an equal opportunity -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Les Mollusques Continentaux De La Région Nord-Pas-De-Calais Liste Des Espèces, Échantillonnage Et Base De Données
Université des Sciences et Technologies de Lille – U.F.R. de Biologie Année 2003 n°ordre Diplôme Supérieur de Recherche en Sciences Naturelles Présenté et soutenu publiquement par XAVIER CUCHERAT le 2 juillet 2003 Les Mollusques Continentaux de la Région Nord-Pas-de-Calais Liste des espèces, Échantillonnage et Base de Données Jury PR. M. DESCAMPS Université de Lille I Président DR. A. LEPRETRE Université de Lille I Rapporteur DR. S. DEMUYNCK Université de Lille I Examinateur DR. J. GODIN Université de Lille I Examinateur DR. J. PRYGIEL Agence de l’Eau Artois-Picardie Examinateur Université des Sciences et Technologies de Lille – U.F.R. de Biologie Année 2003 n°ordre Diplôme Supérieur de Recherche en Sciences Naturelles Présenté et soutenu publiquement par XAVIER CUCHERAT le 2 juillet 2003 Les Mollusques Continentaux de la Région Nord-Pas-de-Calais Liste des espèces, Échantillonnage et Base de Données Arion rufus (LINNAEUS 1758) Lymnaea stagnalis (LINNAEUS 1758) Adultes en parade nuptiale / Forêt Domaniale Adulte / dunes d’Erdeven / Erdeven de Mormal / Locquignol (Nord). 09/2001. (Morbihan). 05/2001. Taille des individus : 90 mm. Taille de l’individu : 60 mm. Photo : GUILLAUME EVANNO Photo : GUILLAUME EVANNO Malacolimax tenellus (O. F. MÜLLER 1774) Cepaea nemoralis nemoralis (LINNAEUS Adulte / Forêt Domaniale de Mormal / 1758) Locquignol (Nord). 09/2001. Adulte / Guebwiller (Haut-Rhin). 04/2003. Taille de l’individu : 35 mm. Taille de l’individu : 25mm. Photo : GUILLAUME EVANNO Photo : ALAIN LEPRETRE Jury PR. M. DESCAMPS Université de Lille I Président DR. A. LEPRETRE Université de Lille I Rapporteur DR. S. DEMUYNCK Université de Lille I Examinateur DR. -
Abstract Volume
ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. -
Land Snails of Leicestershire and Rutland
Land Snails of Leicestershire and Rutland Introduction There are 50 known species of land snail found in Leicestershire and Rutland (VC55) which represents about half of the 100 UK species. However molluscs are an under-recorded taxon group so it is possible that more species could be found and equally possible that a few may now be extinct in our two counties. There was a 20 year period of enthusiastic mollusc recording between 1967 and 1986, principally by museum staff, which account for the majority of species. Whilst records have increased again in the last three years thanks to NatureSpot, some species have not been recorded for over 30 years. All our land snails are in the class Gastropoda and the order Pulmonata. Whilst some of these species require damp habitats and are generally found near to aquatic habitats, they are all able to survive out of water. A number of species are largely restricted to calcareous habitats so are only found at a few sites. The sizes stated refer to the largest dimension of the shell typically found in adult specimens. There is much variation in many species and juveniles will of course be smaller. Note that the images are all greater than life size and not all the to the same scale. I have tried to display them at a sufficiently large scale so that the key features are visible. Always refer to the sizes given in the text. Status refers to abundance in Leicestershire and Rutland (VC55). However molluscs are generally under- recorded so our understanding of their distribution could easily change. -
Malacologica
FOLIA Folia Malacol. 24(4): 265–273 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, December 2016 http://dx.doi.org/10.12657/folmal.024.022 REPRODUCTIVE BIOLOGY AND GROWTH OF TWO VALLONIA SPECIES IN LABORATORY CONDITIONS (GASTROPODA: EUPULMONATA: VALLONIIDAE) ElżbiEta KuźniK-KowalsKa1*, Małgorzata ProćKów2 1Department of Invertebrate Systematics and Ecology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland (e-mail: [email protected]) 2Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland (e-mail: [email protected]) *corresponding author abstract: Reproduction and growth of Vallonia pulchella (O. F. Müller) and V. costata (O. F. Müller) were studied in laboratory conditions. Their ellipsoid and singly laid eggs are among the smallest heavily calcified (mean size 0.68×0.67×0.52 and 0.69×0.67×0.54 mm in V. pulchella and V. costata, respectively). V. pulchella reached morphological maturity (lip completion) at 3.25–3.50 whorls (mean 3.35), 49 to 166 days after hatching (85). The first egg (sexual maturity) was laid at 3.25–3.50 whorls (3.35), 50–283 days after hatching (162). The life span ranged from 628 to 940 days (779), the time elapsing between the last egg and death was 12–184 days (111). In V. costata the lip was completed at 3.25–3.50 whorls (3.37), 42 to 183 days after hatching (120). The first egg was laid at 3.25–3.50 whorls (3.42), 131–290 days after hatching (193). -
Radiocarbon Dating of Small Terrestrial Gastropod Shells in North America
Quaternary Geochronology 5 (2010) 519–532 Contents lists available at ScienceDirect Quaternary Geochronology journal homepage: www.elsevier.com/locate/quageo Research Paper Radiocarbon dating of small terrestrial gastropod shells in North America Jeffrey S. Pigati a,*, Jason A. Rech b, Jeffrey C. Nekola c a U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver CO 80225, USA b Department of Geology, Miami University, Oxford, OH 45056, USA c Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA article info abstract Article history: Fossil shells of small terrestrial gastropods are commonly preserved in wetland, alluvial, loess, and glacial Received 26 May 2009 deposits, as well as in sediments at many archeological sites. These shells are composed largely of Received in revised form aragonite (CaCO3) and potentially could be used for radiocarbon dating, but they must meet two criteria 20 January 2010 before their 14C ages can be considered to be reliable: (1) when gastropods are alive, the 14C activity of Accepted 21 January 2010 their shells must be in equilibrium with the 14C activity of the atmosphere, and (2) after burial, their Available online 29 January 2010 shells must behave as closed systems with respect to carbon. To evaluate the first criterion, we conducted a comprehensive examination of the 14C content of the most common small terrestrial gastropods in Keywords: Radiocarbon North America, including 247 AMS measurements of modern shell material (3749 individual shells) from Land snails 46 different species. The modern gastropods that we analyzed were all collected from habitats on Limestone effect carbonate terrain and, therefore, the data presented here represent worst-case scenarios. -
Land Snails and Slugs (Gastropoda: Caenogastropoda and Pulmonata) of Two National Parks Along the Potomac River Near Washington, District of Columbia
Banisteria, Number 43, pages 3-20 © 2014 Virginia Natural History Society Land Snails and Slugs (Gastropoda: Caenogastropoda and Pulmonata) of Two National Parks along the Potomac River near Washington, District of Columbia Brent W. Steury U.S. National Park Service 700 George Washington Memorial Parkway Turkey Run Park Headquarters McLean, Virginia 22101 Timothy A. Pearce Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh, Pennsylvania 15213-4080 ABSTRACT The land snails and slugs (Gastropoda: Caenogastropoda and Pulmonata) of two national parks along the Potomac River in Washington DC, Maryland, and Virginia were surveyed in 2010 and 2011. A total of 64 species was documented accounting for 60 new county or District records. Paralaoma servilis (Shuttleworth) and Zonitoides nitidus (Müller) are recorded for the first time from Virginia and Euconulus polygyratus (Pilsbry) is confirmed from the state. Previously unreported growth forms of Punctum smithi Morrison and Stenotrema barbatum (Clapp) are described. Key words: District of Columbia, Euconulus polygyratus, Gastropoda, land snails, Maryland, national park, Paralaoma servilis, Punctum smithi, Stenotrema barbatum, Virginia, Zonitoides nitidus. INTRODUCTION Although county-level distributions of native land gastropods have been published for the eastern United Land snails and slugs (Gastropoda: Caeno- States (Hubricht, 1985), and for the District of gastropoda and Pulmonata) represent a large portion of Columbia and Maryland (Grimm, 1971a), and Virginia the terrestrial invertebrate fauna with estimates ranging (Beetle, 1973), no published records exist specific to between 30,000 and 35,000 species worldwide (Solem, the areas inventoried during this study, which covered 1984), including at least 523 native taxa in the eastern select national park sites along the Potomac River in United States (Hubricht, 1985).