Redalyc.Lethality of Cytochalasin B and Other Compounds Isolated From

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Lethality of Cytochalasin B and Other Compounds Isolated From Revista Argentina de Microbiología ISSN: 0325-7541 [email protected] Asociación Argentina de Microbiología Argentina Feitosa, André de O.; Dias, Amanda Cristina S.; Ramos, Gisele da C.; Bitencourt, Heriberto R.; Siqueira, José Edson S.; Santana B. Marinho, Patrícia; Barison, Andersson; Ocampos, Fernanda M.M.; do R. Marinho, Andrey Moacir Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae) Revista Argentina de Microbiología, vol. 48, núm. 3, julio-septiembre, 2016, pp. 259-263 Asociación Argentina de Microbiología Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=213047799014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev Argent Microbiol. 2016;48(3):259---263 R E V I S T A A R G E N T I N A D E MICROBIOLOGÍA www.elsevier.es/ram BRIEF REPORTS Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae) a a a André de O. Feitosa , Amanda Cristina S. Dias , Gisele da C. Ramos , a a Heriberto R. Bitencourt , José Edson S. Siqueira , a b b Patrícia Santana B. Marinho , Andersson Barison , Fernanda M.M. Ocampos , a,∗ Andrey Moacir do R. Marinho a Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais-Programa de Pós-graduac¸ão em Química, Belém, Pará, Brazil b Universidade Federal do Paraná, Departamento de Química-Programa de Pós-graduac¸ão em Química, Curitiba, Paraná, Brazil Received 6 October 2015; accepted 8 April 2016 Available online 24 August 2016 KEYWORDS Abstract Endophytic fungi are fungi that colonize internal tissues of plants; several biologically active compounds have been isolated from these fungi. There are few studies of compounds Endophytic fungi; isolated from endophytic fungi of Amazon plants. Thus, this study aimed the isolation and struc- Artemia salina; Secondary tural identification of ergosterol (1), ergosterol peroxide (2), mevalonolactone (3), cytochalasin metabolites B (4) and cytochalasin H (5) from Aspergillus sp. EJC 04, an endophytic fungus from Bauhinia guianensis. The cytochalasin B (4) and the diacetate derivative of cytochalasin B (4a) showed high lethality in the brine shrimp assay. This is the first occurrence of cytochalasins in Amazonian endophytic fungi from B. guianensis. © 2016 Asociacion´ Argentina de Microbiolog´ıa. Published by Elsevier Espana,˜ S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/). PALABRAS CLAVE Letalidad de citocalasina B y otros compuestos aislados del hongo Aspergillus spp. Hongos endófitos; (Trichocomaceae) endófito de Bauhinia guianensis (Fabaceae) Artemia salina; Metabolitos Resumen Los hongos endofíticos son hongos que colonizan los tejidos internos de las plantas; secundarios varios compuestos biológicamente activos se han aislado a partir de estos hongos. Existen pocos estudios de compuestos aislados de hongos endófitos de plantas amazónicas. Por lo tanto, este ∗ Corresponding author. E-mail address: [email protected] (A.M.d.R. Marinho). http://dx.doi.org/10.1016/j.ram.2016.04.002 0325-7541/© 2016 Asociacion´ Argentina de Microbiolog´ıa. Published by Elsevier Espana,˜ S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 260 A.d.O. Feitosa et al. estudio tuvo como objetivo el aislamiento y la identificación estructural de ergosterol (1), peróxido de ergosterol (2), mevalonolactona (3), citocalasina B (4) y citocalasina H (5) a partir de Aspergillus spp. EJC 04, un hongo endofítico de Bauhinia guianensis. La citocalasina B (4) y el derivado diacetato de citocalasina B (4a) mostraron una alta letalidad en el ensayo de Artemia salina. Esta es la primera aparición de citocalasinas en hongos endófitos amazónica de B. guianensis. © 2016 Asociacion´ Argentina de Microbiolog´ıa. Publicado por Elsevier Espana,˜ S.L.U. Este es un art´ıculo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by- nc-nd/4.0/). ◦ ® The Aspergillus genus has more than one hun- for 45 min at 121 C (autoclave Prismatec ). Small pieces dred species, and belongs to the Ascomycota division, of PDA containing mycelium of Aspergillus sp. were added Deuteromycotina subdivision, Hyphomycetes class, Monil- to 4 Erlenmeyer flasks under sterile conditions, then, the ◦ iales order, Moniliaceae family. The species are widely Erlenmeyer flasks were incubated at 25 C for 23 days, two found in nature, they can be isolated from plants, soil, air Erlenmeyer flasks were used as control. Biomass was mace- 13 ® and decaying matter . Several species have been described rated with ethyl acetate (Tedia ) (3× 500 ml). The biomass 3 as producers of toxic metabolites . The Aspergillus fungi was separated of the ethyl acetate solution by filtration. have been an important source of natural products useful Then, the ethyl acetate extracts (10 g) were obtained after for exploration in medicine, agriculture and industry. Sev- evaporation of the resulting solution in rotary evaporator at ◦ ® eral compounds with cytotoxic activity have been isolated 45 C (Quimis ). Part of the ethyl acetate extract (5.0 g) was 1,16,19 from endophytic fungi . Compounds of the xanthones fractionated on silica gel column using hexane/ethyl acetate class isolated from Aspergillus sydowii showed immunosup- (9:1, 4:1, 7:3, 1:1, 3:7), ethyl acetate/methanol (3:7, 1:1) 17 pressive activities , and the tensyuic A acid isolated from and methanol, resulting in 9 fractions. The hexane/ethyl 6 Aspergillus niger showed antimicrobial activity . There are acetate 9:1 fraction (500 mg) was submitted on silica gel reports of the isolation of cytochalasin E from an endophytic column chromatography eluted with hexane/ethyl acetate 18 12 fungus that showed cytotoxicity . Petersen et al. isolated (9:1, 4:1, 7:3, 1:1, 3:7) and ethyl acetate, resulting in 92 from the fungus Aspergillus sclerotioniger cytochalasins fractions. The fractions were pooled (A1 to A8); the fraction sclerotionigrin A and B that showed cytotoxic activity A2 provided a white amorphous solid identified as ergosterol in vitro against lymphocytic leukemia cells. The aims of 1 (30 mg), and the A4 fraction provided a white amorphous this study were the isolation and structural identification solid identified as ergosterol peroxide 2 (35 mg). The hex- of ergosterol (1), ergosterol peroxide (2), mevalonolactone ane/ethyl acetate 8:2 fraction (600 mg) was submitted on (3), cytochalasin B (4), cytochalasin H (5), and the deriva- silica gel column chromatography eluted with hexane/ethyl tive 7,20-diacetyl-cytochalasin B (4a) from the endophytic acetate (9:1, 4:1, 7:3, 1:1, 3:7) and ethyl acetate, resulting fungus Aspergillus sp. EJC 04 cultures, and testing the in 100 fractions pooled as B1 to B9, the fraction B2 afforded a lethality of isolated compounds against Artemia salina. yellow oil identified as mevalonolactone 3 (6 mg). The ethyl 1 13 The H and C NMR experiments were recorded on a acetate fraction (2 g) was submitted on silica gel column NMR spectrometer (Mercury 300, Varian, Oxford, Oxford- chromatography, eluted with hexane/ethyl acetate (9:1, ® shire, UK) with CDCl3 (Cambridge ) as solvent and standard. 4:1, 7:3, 1:1, 3:7), ethyl acetate, ethyl acetate/methanol The MS spectra were carried out in the mass spectrome- (3:7, 1:1) and methanol, resulting in 120 fractions pooled ter using ESI (+) ion mode (Acquity TQD, Waters, Milford, as C1 to C12; fraction C5 afforded a white solid identified MA, USA). The specific rotation was performed on a specific as cytochalasin B 4 (100 mg) and the fraction C7 gave a rotation equipment (Nova Instruments No. 1412, Piracicaba, white solid identified as cytochalasin H 5 (5 mg). All com- Brazil). pounds 1--- 5 were identified by NMR and MS spectrometric The fungus Aspergillus sp. was obtained from a col- data. lection of ‘‘Laboratório de Bioensaios e Química de The cytochalasin B (4) was acetylated; for this, 10 mg of Micro-organismos --- LaBQuiM/UFPA’’. This collection con- compound 4 were removed and solubilized in 100 ␮l of pyri- ® tains isolates from Bauhinia guianensis. The fungus was dine (Tedia ), then it was added 250 ␮l of acetic anhydride ® inoculated into a Petri dish containing PDA (Potato Dex- (Tedia ) and kept at rest for 24 h at room temperature. After ® trose Agar) culture medium (Himedia ) and incubated at this period, the material was transferred to a separatory ◦ ® 25 C (BOD, Quimis ) for 8 days to reactivation. One strain is funnel, and it was added 25 ml of 5% HCl solution to remove deposited with a code EJC 04. The fungus Aspergillus EJC 04 excess pyridine, and extraction was performed with ethyl was identified by observing the morphology and microscopic acetate (3× 15 ml). The ethyl acetate phase was further aspects of the colony in an optical microscope and by DNA washed with distilled water (3× 25 ml) and after separation sequence through analyses of the ITS5 region. was added anhydrous sodium sulfate in the ethyl acetate Six Erlenmeyer flasks (1000 ml) containing 200 g of rice phase, which after filtered was evaporated to obtain the ® (Uncle Ben’s ) and 75 ml of water per flasks were autoclaved acetylated product 4a. Lethality of cytochalasin B and other compounds 261 21 28 20 22 18 24 O 23 27 11 17 19 13 25 H 1 14 O 26 H 9 H O HO 3 H HO 5 O 6 1 2 3 HO O 12 11 O OH 6 5 7 H H 30 10 8 14 16 25 3 9 29 4 17 13 15 OH HN HN O 26 18 1 O 23 28 22 20 O O 12 27 21 19 O O O O 11 OH 4 6 7 4a 5 H H 8 14 15 10 4 9 3 13 31 26 H 22 1 16 30 HN 21 20 17 18 27 19 O O 28 24 OH 29 23 O 5 25 Figure 1 Compounds isolated from Aspergillus sp.
Recommended publications
  • Diversity and Community of Culturable Endophytic Fungi from Stems and Roots of Desert Halophytes in Northwest China
    A peer-reviewed open-access journal MycoKeys 62: 75–95 (2020) Culturable endophytic fungal of desert halophytes 75 doi: 10.3897/mycokeys.62.38923 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China Jia-Long Li1,2,3, Xiang Sun1,4, Yong Zheng5, Peng-Peng Lü1,3, Yong-Long Wang1,3, Liang-Dong Guo1,3 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 2 National Joint Engineering Research Center of Separation and purification technology of Chinese Ethnic Veterinary Herbs, Tongren Polytechnic College, Tongren, 554300, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China 4 Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel 5 School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China Corresponding authors: Xiang Sun ([email protected]); Liang-Dong Guo ([email protected]) Academic editor: P. Divakar | Received 10 August 2019 | Accepted 10 December 2019 | Published 3 February 2020 Citation: Li J-L, Sun X, Zheng Y, Lü P-P, Wang Y-L, Guo L-D (2020) Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 62: 75–95. https://doi. org/10.3897/mycokeys.62.38923 Abstract Halophytes have high species diversity and play important roles in ecosystems. However, endophytic fungi of halophytes in desert ecosystems have been less investigated.
    [Show full text]
  • Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
    Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene.
    [Show full text]
  • A Taxonomic and Phylogenetic Investigation of Conifer Endophytes
    A Taxonomic and Phylogenetic Investigation of Conifer Endophytes of Eastern Canada by Joey B. Tanney A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2016 Abstract Research interest in endophytic fungi has increased substantially, yet is the current research paradigm capable of addressing fundamental taxonomic questions? More than half of the ca. 30,000 endophyte sequences accessioned into GenBank are unidentified to the family rank and this disparity grows every year. The problems with identifying endophytes are a lack of taxonomically informative morphological characters in vitro and a paucity of relevant DNA reference sequences. A study involving ca. 2,600 Picea endophyte cultures from the Acadian Forest Region in Eastern Canada sought to address these taxonomic issues with a combined approach involving molecular methods, classical taxonomy, and field work. It was hypothesized that foliar endophytes have complex life histories involving saprotrophic reproductive stages associated with the host foliage, alternative host substrates, or alternate hosts. Based on inferences from phylogenetic data, new field collections or herbarium specimens were sought to connect unidentifiable endophytes with identifiable material. Approximately 40 endophytes were connected with identifiable material, which resulted in the description of four novel genera and 21 novel species and substantial progress in endophyte taxonomy. Endophytes were connected with saprotrophs and exhibited reproductive stages on non-foliar tissues or different hosts. These results provide support for the foraging ascomycete hypothesis, postulating that for some fungi endophytism is a secondary life history strategy that facilitates persistence and dispersal in the absence of a primary host.
    [Show full text]
  • The Isolation and Identification of Fungi from the Soil in Gardens of Cabbage Were Contaminated with Pesticide Residues in Subdistrict Modoinding
    International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 4 Issue 7 ǁ July. 2016 ǁ PP. 25-32 The Isolation and Identification of Fungi from the Soil in Gardens of Cabbage Were Contaminated with Pesticide Residues in Subdistrict Modoinding Stella D. Umboh1), Christina L. Salaki2), Max Tulung2), Lucia C. Mandey2), And Redsway T.D. Maramis2) 1) Doctoral Student at the University of Sam Ratulangi, Manado, North Sulawesi, Indonesia. Mobile Phone: + 62- 81340091042. E-mail: [email protected] 2) Faculty of Agriculture, University of Sam Ratulangi, Manado, North Sulawesi Abstract: Application of pesticides in the garden cabbage can cause negative effects harmful to the environment and living things. The objectives of this research were to get species of fungi from the soil in the gardens of cabbage contaminated with pesticide residues in Subdistrict Modoinding. Isolation of fungi using dilution plate method with serial dilutions of 10-2 to 10-5 on Potato Dextrose Agar (PDA). Of the five soil treatments in the gardens of cabbage obtained 76 isolates of the fungus. Isolates of soil fungi that were successfully identified macroscopically and microscopically. These fungal isolates included in 13 families and 22 species. Fungal species according to the following families: Endomycetaceae (Geotrichum candidum), Trichocomaceae (Penicillium citrinum, Aspergillus fumigatus, Aspergillus nidulans, Paecilomyces lilacinus, Aspergillus foot cell, Aspergillus sydowii, Aspergillus flavus, Aspergillus terreus and Aspergillus niger), Sordariaceae (Chrysonilia sitophila), Mucoraceae (Mucor hiemalis), Pleurostomataceae (Pleurostmophora richardsiae), Hypocreaceae (Gliocladium virens), Pythiaceae (Phytophthora infestans), Chaetomiaceae (Humicola fuscoatra), Eremomycetaceae (Arthrographis cuboidea), incertae sedis (Scytalidium lignicola), Bionectriaceae (Gliocladium roseum) and Arthrodermataceae (Microsporum audouinii).
    [Show full text]
  • Aspergillus and Penicillium Identification Using DNA Sequences: Barcode Or MLST?
    Appl Microbiol Biotechnol (2012) 95:339–344 DOI 10.1007/s00253-012-4165-2 MINI-REVIEW Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Stephen W. Peterson Received: 28 March 2012 /Revised: 9 May 2012 /Accepted: 10 May 2012 /Published online: 27 May 2012 # Springer-Verlag (outside the USA) 2012 Abstract Current methods in DNA technology can detect several commodities. Aspergillus fumigatus, Aspergillus single nucleotide polymorphisms with measurable accuracy flavus, Aspergillus terreus (Walsh et al. 2011), and using several different approaches appropriate for different Talaromyces (syn. 0 Penicillium) marneffei (Sudjaritruk uses. If there are even single nucleotide differences that are et al. 2012) are recognized opportunistic pathogens of humans, invariant markers of the species, we can accomplish identifi- especially those with weakened immune systems. Aspergillus cation through rapid DNA-based tests. The question of whether niger is used for the production of enzymes and citric acid we can reliably detect and identify species of Aspergillus and (e.g., Dhillon et al. 2012), Aspergillus oryzae is used to pro- Penicillium turns mainly upon the completeness of our alpha duce soy sauce, Penicillium roqueforti ripens blue cheeses and taxonomy, our species concepts, and how well the available penicillin is produced by Penicillium chrysogenum (e.g., Xu et DNA data coincide with the taxonomic diversity in the family al. 2012). Heat-resistant Byssochlamys species can grow in Trichocomaceae. No single gene is yet known that is invariant pasteurized fruit juices (Sant’ana et al. 2010). These genera within species and variable between species as would be opti- along with a few others comprise the family Trichocomaceae.
    [Show full text]
  • Supplementary Materials For
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supplementary materials for: Fungal community analysis in the seawater of the Mariana Trench as estimated by Illumina HiSeq Zhi-Peng Wang b, †, Zeng-Zhi Liu c, †, Yi-Lin Wang d, Wang-Hua Bi c, Lu Liu c, Hai-Ying Wang b, Yuan Zheng b, Lin-Lin Zhang e, Shu-Gang Hu e, Shan-Shan Xu c, *, Peng Zhang a, * 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China 2 Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China 3 School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. 4 College of Science, China University of Petroleum, Qingdao, Shandong 266580, China. 5 College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao, 266510, China. a These authors contributed equally to this work *Authors to whom correspondence should be addressed Supplementary Table S1. Read counts of OTUs in different sampled sites. OTUs M1.1 M1.2 M1.3 M1.4 M3.1 M3.2 M3.4 M4.2 M4.3 M4.4 M7.1 M7.2 M7.3 Total number OTU1 13714 398 5405 671 11604 3286 3452 349 3560 2537 383 2629 3203 51204 OTU2 6477 2203 2188 1048 2225 1722 235 1270 2564 5258 7149 7131 3606 43089 OTU3 165 39 13084 37 81 7 11 11 2 176 289 4 2102 16021 OTU4 642 4347 439 514 638 191 170 179 0 1969 570 678 0 10348 OTU5 28 13 4806 7 44 151 10 620 3
    [Show full text]
  • The Changing Face of Pathogen Discovery and Surveillance
    PERSPECTIVES 1. Kirk, P. et al. (eds) Dictionary of the Fungi 10th edn 29. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Acknowledgments (CABI, 2008). Geographic barriers isolate endemic populations of The authors thank their colleagues and members of their labo‑ 2. Bass, D. & Richards, T. A. Three reasons to re‑evaluate hyperthermophilic archaea. Science 301, 976–978 ratories for discussions on the principles of fungal taxonomy, fungal diversity “on Earth and in the ocean”. Fungal (2003). and the International Mycological Association and the Biol. Rev. 25, 159–164 (2011). 30. Cadillo-Quiroz, H. et al. Patterns of gene flow define Centraalbureau voor Schimmelcultures for hosting meetings 3. McNeill, J. et al. (eds) International Code of Botanical species of thermophilic Archaea. PLoS Biol. 10, addressing the revolution in fungal nomenclature. Research in Nomenclature (Vienna Code) (Gantner, 2006). e1001265 (2012). the authors’ laboratories is supported by the Open Tree of Life 4. Hawksworth, D. L. et al. The Amsterdam declaration on 31. Gevers, D. et al. Re‑evaluating prokaryotic species. Project (http://opentreeoflife.org/), the US National Science fungal nomenclature. IMA Fungus 2, 105–112 (2011). Nature Rev. Microbiol. 3, 733–739 (2005). Foundation (grant DEB-1208719 to D.S.H.), the US National 5. Hibbett, D. S. et al. Progress in molecular and 32. Rainey, F. A. & Oren, A. in Methods in Microbiology. Institutes of Health (grant U54-AI65359 to J.T.W.) and the morphological taxon discovery in Fungi and options Vol. 38 (eds Rainey, F. & Oren, A.) 1–5 (Academic, Energy Biosciences Institute (grant EBI 001J09 to J.W.T.).
    [Show full text]
  • Tour Pages by Clicking This Link
    STATION 1 (Welcome) WELCOME TO THE CBEC TINY THINGS TOUR (STATION 1) This tour is designed to acquaint CBEC visitors with the amazingly diverse array of organisms here that are not typically noticed, mainly because they’re too small to be seen without either very careful observation or the aid of a magnifier (either a handheld device or a microscope). The tour will discuss representatives of the six kingdoms of living things (Bacteria, Archaea, Fungi, Plants, Protists, and Animals), as well as viruses. In addition to brief discussions of the particular organisms themselves, we’ll consider the role that these organisms play in their immediate environment, their effect on the larger biosphere, and their ability to teach us about the past and the future. Taking the Tour: To take the tour, visitors may use the Tiny Things Tour map, where the 14 stations are indicated with red numbers. The map should be used in conjunction with the printable list of stations. The list has the GPS coordinates for each station, along with QR codes that provide links to the web pages that describe each station. The GPS coordinates, as well as a simple description of each location are included on each station’s web page. If visitors haven’t brought along a mobile device (to view the web pages), they can print a copy of the tour pages by clicking this link. A guided version of the Tiny Things Tour is scheduled on a regular basis. Check the CBEC schedule for upcoming guided tours. Each web page includes a photo of the representative organism, it’s common name and scientific name, a description of the station location (including its GPS location), and a description of the organism and its environment.
    [Show full text]
  • Prospects for Fungus Identification Using CO1 DNA Barcodes, with Penicillium As a Test Case
    Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case Keith A. Seifert*†, Robert A. Samson‡, Jeremy R. deWaard§, Jos Houbraken‡, C. Andre´ Le´ vesque*, Jean-Marc Moncalvo¶, Gerry Louis-Seize*, and Paul D. N. Hebert§ *Biodiversity (Mycology and Botany), Environmental Sciences, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6; ‡Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, 3508 AD, Utrecht, The Netherlands; §Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada N1G 2W1; and ¶Department of Natural History, Royal Ontario Museum, and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 2C6 Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, January 3, 2007 (received for review September 11, 2006) DNA barcoding systems employ a short, standardized gene region large ribosomal subunit (2), the internal transcribed spacer (ITS) to identify species. A 648-bp segment of mitochondrial cytochrome cistron (e.g., refs. 3 and 4), partial ␤-tubulin A (BenA) gene c oxidase 1 (CO1) is the core barcode region for animals, but its sequences (5), or partial elongation factor 1-␣ (EF-1␣) se- utility has not been tested in fungi. This study began with an quences (6), and sometimes other protein-coding genes. examination of patterns of sequence divergences in this gene The concept of DNA barcoding proposes that effective, broad region for 38 fungal taxa with full CO1 sequences. Because these spectrum identification systems can be based on sequence results suggested that CO1 could be effective in species recogni- diversity in short, standardized gene regions (7–9). To date, this tion, we designed primers for a 545-bp fragment of CO1 and premise has been tested most extensively in the animal kingdom, generated sequences for multiple strains from 58 species of Pen- where a 648-bp region of the cytochrome c oxidase 1 (CO1) gene icillium subgenus Penicillium and 12 allied species.
    [Show full text]
  • Peer Review Cbs-Kna W 2008–2013
    PEER REVIEW CBS-KNAW 2008–2013 To Collect, Study and Preserve Self-evaluation report 2008–2013 of The CBS Fungal Biodiversity Centre (CBS-KNAW) Utrecht 2014 CBS directors Prof. Dr Pedro W. Crous, Director (2002-present) Dr Mariëtte A. Oosterwegel, Managing Director (2012-present) CBS Fungal Biodiversity Centre (CBS-KNAW) Uppsalalaan 8 3584 CT Utrecht The Netherlands T +31 (0)30 2122600 www.cbs.knaw.nl [email protected] Postal address: P. O. Box 85167 3508 AD Utrecht The Netherlands Preface It is with great pleasure that we herewith present the self-evaluation of the CBS Fungal Biodiversity Centre of the Royal Netherlands Academy of Arts and Sciences. The report evaluates our research accomplishments over the period of 2008–2013. As stipulated by the Dutch self-evaluation protocol, the report contains general documentation pertaining to the institute as whole, while the research programmes and future perspectives are also presented. The preparation of this report required input from numerous members of staff, and we would like to take this opportunity to thank all of them for their time and dedication. The present self-evaluation presents a good overview of the past performance of the CBS, and also clearly establishes our exciting future research goals in fungal biodiversity. April 2014 Prof. dr P.W. Crous (Director) Dr M.A. Oosterwegel (Managing Director) Contents 1. CBS Fungal Biodiversity Centre (CBS-KNAW) 1 2. Evolutionary Phytopathology Programme – P.W. Crous 15 3. Origins of Pathogenicity in Clinical Fungi Programme – G.S. de Hoog 24 4. Yeast Research Programme – T. Boekhout 33 5.
    [Show full text]