Peer Review Cbs-Kna W 2008–2013

Total Page:16

File Type:pdf, Size:1020Kb

Peer Review Cbs-Kna W 2008–2013 PEER REVIEW CBS-KNAW 2008–2013 To Collect, Study and Preserve Self-evaluation report 2008–2013 of The CBS Fungal Biodiversity Centre (CBS-KNAW) Utrecht 2014 CBS directors Prof. Dr Pedro W. Crous, Director (2002-present) Dr Mariëtte A. Oosterwegel, Managing Director (2012-present) CBS Fungal Biodiversity Centre (CBS-KNAW) Uppsalalaan 8 3584 CT Utrecht The Netherlands T +31 (0)30 2122600 www.cbs.knaw.nl [email protected] Postal address: P. O. Box 85167 3508 AD Utrecht The Netherlands Preface It is with great pleasure that we herewith present the self-evaluation of the CBS Fungal Biodiversity Centre of the Royal Netherlands Academy of Arts and Sciences. The report evaluates our research accomplishments over the period of 2008–2013. As stipulated by the Dutch self-evaluation protocol, the report contains general documentation pertaining to the institute as whole, while the research programmes and future perspectives are also presented. The preparation of this report required input from numerous members of staff, and we would like to take this opportunity to thank all of them for their time and dedication. The present self-evaluation presents a good overview of the past performance of the CBS, and also clearly establishes our exciting future research goals in fungal biodiversity. April 2014 Prof. dr P.W. Crous (Director) Dr M.A. Oosterwegel (Managing Director) Contents 1. CBS Fungal Biodiversity Centre (CBS-KNAW) 1 2. Evolutionary Phytopathology Programme – P.W. Crous 15 3. Origins of Pathogenicity in Clinical Fungi Programme – G.S. de Hoog 24 4. Yeast Research Programme – T. Boekhout 33 5. Applied and Industrial Mycology Programme – R.A. Samson 44 6. Fungal Physiology Programme – R.P. de Vries 54 7. Bioinformatics Programme – V. Robert 62 8. Collection – G. Verkley 79 9. Appendix - Bibliometric analyses 91 Additional information online: www.cbs.knaw.nl/index.php/research e.g. access to PDFs of key publications. 1. CBS Fungal Biodiversity Centre (CBS-KNAW) 1.1 Objectives and research area Introduction and history The AIM of the CBS Fungal Biodiversity Institute (CBS) is to study all aspects of fungal biodiversity in three focused themes, namely Agricultural, Industrial, and Medical mycology. CBS is one of four life science institutes in the Royal Netherlands Academy of Arts and Sciences (KNAW). It employs around 70 scientific staff, plus 20–30 support staff, which it shares with the Hubrecht Institute, its neighbour institute on De Uithof in Utrecht. CBS has an annual Academy budget of approximately 3 million euros, and generates an additional 3–4 million euros from industry and research grants. The CBS was established in Baarn in 1904 to house a collection of fungal cultures following a decision taken at the 11th International Botanical Congress at Vienna. For some time between the two World Wars CBS was financially supported by the Royal Netherlands Academy of Arts and Sciences, of which it became an official institute in 1968. Professor F.A.F.C. Went, who was responsible for founding the culture collection, appointed the first female professor in the Netherlands, Prof. J. Westerdijk, as first director of the institute in 1907. In December 2000 the CBS moved to Utrecht where it was accommodated in a completely renovated building, previously occupied by the Hubrecht Institute. The complete staff and collection of the yeast department from T.U. Delft also joined the staff, followed by the Dutch bacterial culture collection NCCB, containing the wild- type collections of the T.U. Delft and the Phabagen collection of Utrecht University. The CBS culture collections of micro-organisms are embedded in a scientific environment, which guarantees state of the art quality checks, and simultaneously allows for the development of scientific programmes to improve the quality of the material entrusted to them. CBS was actively involved in setting the international standards for modern long-term preservation as well as for data storage, and recognising the necessity of data exchangeability. It was also one of the first public culture collections to make its complete open catalogue available on the internet. The CBS Collection has been ISO 9001:2008 certified since 2007. The Collection is partner of the Microbial Resource Research Infrastructure (MIRRI). MIRRI aims to build one pan-European infrastructure for microbial collections and to establish links across the distributed microbiological resource centre community, its users, policy makers and potential funders. As member of the Consortium for the Barcode of Life (CBOL), International Barcode of Life (IBOL), and coordinator of the European Consortium for the Barcode of Life (ECBOL), the CBS has undertaken an ambitious programme to generate DNA barcodes (ITS, LSU) of all its holdings [80 000 strains of filamentous fungi (open and non-public collection), and 9 500 yeast strains], transforming it into a Genetic Resource Centre that can actively serve the research community of the future. The present self-evaluation covers the period 2008–2013 of the research activities of the CBS. Vision, mission and objectives of the institute Vision: CBS is one of the major microbial Genetic Resource Centres in the world. As such, our unique fungal collection and databases, linked to a strong research staff component, enable us to participate in diverse EU, national and international research programmes, focusing on innovative research in industrial, medical and agricultural mycology. Our vision is to collect, study and preserve as much of the world’s fungal biodiversity as possible, and to unlock this resource for the international research community, using current state of the art techniques. Initiatives such as MycoBank, EU-BOLD, and Open Access Journals (Studies in Mycology, Persoonia, IMA Fungus) are true to the CBS mission and focus, and will further strengthen the institute, and promote mycology as discipline. Part 1 - CBS Fungal Biodiversity Centre (CBS-KNAW) 1 Mission: The CBS Fungal Biodiversity Centre was established more than 110 years ago with the specific mission to preserve the world’s fungal biodiversity. Presently the CBS includes the largest known public service collection of living fungi. The CBS is the world leader for the elucidation of fungal biodiversity, of which presently is estimated that less than 10% is known. From its fast growing culture collection, the CBS aims to initiate fundamental and applied research with other (inter)national research groups on the exploration of the vast potential that fungi represent with respect to agricultural, industrial and medical themes. As such, the CBS as genetic resource centre is an (inter)national hub for mycological research. Objectives: CBS has chosen to transform itself from simply being an international culture collection to being the trendsetter and gold standard of mycology. Our core business is the collection, and our research programmes add value to that collection. Each research programme consists of several projects. While some projects represent “discovery science”, focusing on discovering biodiversity, others are focused on “understanding processes”, and thus on striving to unravel metabolomic, proteomic or genomic complexities of specific fungal groups or species. A third approach is “recognition science”, developing diagnostic tools for practical use in industry, plant pathology, and in the hospital. Our main objective, however, is to collect, study, preserve and unlock the world’s fungal biodiversity, enabling us to do innovative research in agriculture, human health and industry. Research area The CBS Fungal Biodiversity Centre is an institute of biosystematics, with the culture collection at its core. The primary aim of its research programmes is to enhance its unique living collection of fungi by adding valuable new data and cultures. Research activities and programmes are coordinated in three focus areas (based on national and international relevance, impact, service to society, and available expertise). Table 1.1. Research themes and programmes. Theme Programme Leader Period Agriculture Evolutionary Phytopathology Prof. dr P.W. Crous 2002– Medical Origins of Pathogenicity in Clinical Fungi Prof. dr G.S. de Hoog 2002– Medical Yeast Research Dr T. Boekhout 2002– Industry Applied and Industrial Mycology Prof. dr R.A. Samson 2002– Industry Fungal Physiology Programme Prof. dr R.P. de Vries 2009– All themes Bioinformatics Programme Dr V. Robert 2009– 1.2 Composition Structure The institute has three research themes containing six programmes (Table 1.1, Fig. 1.1). Each programme has at least a group leader, and senior technician. Each group leader is expected to build his/her own group through acquisition of external funds. Biosystematics requires combined expertise, and thus various members from different groups, including the collection and the bioinformatics programme, frequently work together on specific projects between the various groups. The present evaluation presents condensed information pertaining to the various research programmes. Additional information, such as publications, can be found online. Research is supported by technical staff with different expertise (e.g. molecular, culture collection, bioinformatics). Although technicians are assigned to specific programmes, most provide support CBS-wide, as well as to visiting scientists and students, pending on their fields of expertise. Non-scientific support is provided by the Collection, and 2 the Central Management & Services staff (Financial Administration,
Recommended publications
  • Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
    bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga ,​ Annie Espinal-Centeno ,​ Shamayim Martinez-Sanchez ,​ Juan ​ ​ 1 2 ​ 1,3 ​ Caballero-Pérez ,​ Luis D. Alcaraz *​ & Alfredo Cruz-Ramirez *.​ ​ ​ ​ 1 Molecular​ & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio​ de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela​ de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ​ ​ ​ ● ​Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. ​ During colonial times they were renamed with the antillan word maguey. This was changed ​ ​ again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several ​ Mexican prehispanic cultures, Agave species were not only considered as crops, but also part ​ of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Microbial Diversity in Raw Milk and Sayram Ketteki from Southern of Xinjiang, China
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435442; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Microbial diversity in raw milk and Sayram Ketteki from southern of Xinjiang, China DongLa Gao1,2,Weihua Wang1,2*,ZhanJiang Han1,3,Qian Xi1,2, ,RuiCheng Guo1,2,PengCheng Kuang1,2,DongLiang Li1,2 1 College of Life Science, Tarim University, Alaer, Xinjiang , China 2 Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang ,China 3 Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang , China *Corresponding author E-mail: [email protected](Weihua Wang) bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435442; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Raw milk and fermented milk are rich in microbial resources, which are essential for the formation of texture, flavor and taste. In order to gain a deeper knowledge of the bacterial and fungal community diversity in local raw milk and home-made yogurts
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • 1 Recurrent Loss of Abaa, a Master Regulator of Asexual Development in Filamentous Fungi
    bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Recurrent loss of abaA, a master regulator of asexual development in filamentous fungi, 2 correlates with changes in genomic and morphological traits 3 4 Matthew E. Meada,*, Alexander T. Borowskya,b,*, Bastian Joehnkc, Jacob L. Steenwyka, Xing- 5 Xing Shena, Anita Silc, and Antonis Rokasa,# 6 7 aDepartment of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA 8 bCurrent Address: Department of Botany and Plant Sciences, University of California Riverside, 9 Riverside, California, USA 10 cDepartment of Microbiology and Immunology, University of California San Francisco, San 11 Francisco, California, USA 12 13 Short Title: Recurrent loss of abaA across Eurotiomycetes 14 #Address correspondence to Antonis Rokas, [email protected] 15 16 *These authors contributed equally to this work 17 18 19 Keywords: Fungal asexual development, abaA, evolution, developmental evolution, 20 morphology, binding site, Histoplasma capsulatum, regulatory rewiring, gene regulatory 21 network, evo-devo 22 1 bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 23 Abstract 24 Gene regulatory networks (GRNs) drive developmental and cellular differentiation, and variation 25 in their architectures gives rise to morphological diversity.
    [Show full text]
  • Biodiversity of Wood-Decay Fungi in Italy
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Biodiversity of wood-decay fungi in Italy This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/88396 since 2016-10-06T16:54:39Z Published version: DOI:10.1080/11263504.2011.633114 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 28 September 2021 This is the author's final version of the contribution published as: A. Saitta; A. Bernicchia; S.P. Gorjón; E. Altobelli; V.M. Granito; C. Losi; D. Lunghini; O. Maggi; G. Medardi; F. Padovan; L. Pecoraro; A. Vizzini; A.M. Persiani. Biodiversity of wood-decay fungi in Italy. PLANT BIOSYSTEMS. 145(4) pp: 958-968. DOI: 10.1080/11263504.2011.633114 The publisher's version is available at: http://www.tandfonline.com/doi/abs/10.1080/11263504.2011.633114 When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/2318/88396 This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository Biodiversity of wood-decay fungi in Italy A. Saitta , A. Bernicchia , S. P. Gorjón , E.
    [Show full text]
  • Wood Staining Fungi Revealed Taxonomic Novelties in Pezizomycotina: New Order Superstratomycetales and New Species Cyanodermella Oleoligni
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 85: 107–124. Wood staining fungi revealed taxonomic novelties in Pezizomycotina: New order Superstratomycetales and new species Cyanodermella oleoligni E.J. van Nieuwenhuijzen1, J.M. Miadlikowska2*, J.A.M.P. Houbraken1*, O.C.G. Adan3, F.M. Lutzoni2, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Department of Biology, Duke University, Durham, NC 27708, USA; 3Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands *Correspondence: J.M. Miadlikowska, [email protected]; J.A.M.P. Houbraken, [email protected] Abstract: A culture-based survey of staining fungi on oil-treated timber after outdoor exposure in Australia and the Netherlands uncovered new taxa in Pezizomycotina. Their taxonomic novelty was confirmed by phylogenetic analyses of multi-locus sequences (ITS, nrSSU, nrLSU, mitSSU, RPB1, RPB2, and EF-1α) using multiple reference data sets. These previously unknown taxa are recognised as part of a new order (Superstratomycetales) potentially closely related to Trypetheliales (Dothideomycetes), and as a new species of Cyanodermella, C. oleoligni in Stictidaceae (Ostropales) part of the mostly lichenised class Lecanoromycetes. Within Superstratomycetales a single genus named Superstratomyces with three putative species: S. flavomucosus, S. atroviridis, and S. albomucosus are formally described. Monophyly of each circumscribed Superstratomyces species was highly supported and the intraspecific genetic variation was substantially lower than interspecific differences detected among species based on the ITS, nrLSU, and EF-1α loci. Ribosomal loci for all members of Superstratomyces were noticeably different from all fungal sequences available in GenBank.
    [Show full text]
  • 10898405.Pdf
    Kasetsart J. (Nat. Sci.) 37 : 94 - 101 (2004) Thermotolerant and Thermoresistant Paecilomyces and its Teleomorphic States Isolated from Thai Forest and Mountain Soils Janet Jennifer Luangsa-ard1,2, Leka Manoch2, Nigel Hywel-Jones1, Suparp Artjariyasripong3 and Robert A. Samson4 ABSTRACT A Dilution plate method combined with heat treatment at 60∞C and 80∞C was used to isolate thermotolerant and thermoresistant Paecilomyces species in soil. The predominant species of Paecilomyces that had been identified was Paecilomyces variotii, the type species of the genus. Oatmeal Agar was used to induce the teleomorph at 37∞C. Other species isolated belong to Paecilomyces or its teleomorphic states Byssochlamys, Talaromyces and Thermoascus included Byssochlamys nivea, Byssochlamys fulva, Talaromyces byssochlamydoides and Thermoascus crustaceus. Key words: soil fungi, Paecilomyces, Byssochlamys, Talaromyces, Thermoascus, thermotolerant, thermoresistant INTRODUCTION chlamydospores or sclerotial bodies. With the exception of the mycelium that may have little Fungi are the most abundant component of metabolic activity, the mentioned stages are all the soil microflora in terms of biomass. They can dormant survival structures, having little activity be divided into three general functional groups and limited importance in the metabolism of the based on how they get their energy (Gams et al., soil. 1998). As decomposers – Fungi are the major Thermophilic fungi are of economic decomposers (saprobic fungi) in the soil, especially importance with several reported contaminants of in forest soils, mainly participating in cellulose, food products. Because of their thermophily the chitin and lignin decomposition. As mutualists – species can also grow above the body temperature Mycorrhizal fungi colonize plant roots helping the of higher animals hence are potential human plant to solubilize phosphorus and bring soil pathogens.
    [Show full text]
  • Diversity and Community of Culturable Endophytic Fungi from Stems and Roots of Desert Halophytes in Northwest China
    A peer-reviewed open-access journal MycoKeys 62: 75–95 (2020) Culturable endophytic fungal of desert halophytes 75 doi: 10.3897/mycokeys.62.38923 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China Jia-Long Li1,2,3, Xiang Sun1,4, Yong Zheng5, Peng-Peng Lü1,3, Yong-Long Wang1,3, Liang-Dong Guo1,3 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 2 National Joint Engineering Research Center of Separation and purification technology of Chinese Ethnic Veterinary Herbs, Tongren Polytechnic College, Tongren, 554300, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China 4 Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel 5 School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China Corresponding authors: Xiang Sun ([email protected]); Liang-Dong Guo ([email protected]) Academic editor: P. Divakar | Received 10 August 2019 | Accepted 10 December 2019 | Published 3 February 2020 Citation: Li J-L, Sun X, Zheng Y, Lü P-P, Wang Y-L, Guo L-D (2020) Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 62: 75–95. https://doi. org/10.3897/mycokeys.62.38923 Abstract Halophytes have high species diversity and play important roles in ecosystems. However, endophytic fungi of halophytes in desert ecosystems have been less investigated.
    [Show full text]
  • New Records of Aspergillus Allahabadii and Penicillium Sizovae
    MYCOBIOLOGY 2018, VOL. 46, NO. 4, 328–340 https://doi.org/10.1080/12298093.2018.1550169 RESEARCH ARTICLE Four New Records of Ascomycete Species from Korea Thuong T. T. Nguyen, Monmi Pangging, Seo Hee Lee and Hyang Burm Lee Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea ABSTRACT ARTICLE HISTORY While evaluating fungal diversity in freshwater, grasshopper feces, and soil collected at Received 3 July 2018 Dokdo Island in Korea, four fungal strains designated CNUFC-DDS14-1, CNUFC-GHD05-1, Revised 27 September 2018 CNUFC-DDS47-1, and CNUFC-NDR5-2 were isolated. Based on combination studies using Accepted 28 October 2018 phylogenies and morphological characteristics, the isolates were confirmed as Ascodesmis KEYWORDS sphaerospora, Chaetomella raphigera, Gibellulopsis nigrescens, and Myrmecridium schulzeri, Ascomycetes; fecal; respectively. This is the first records of these four species from Korea. freshwater; fungal diversity; soil 1. Introduction Paraphoma, Penicillium, Plectosphaerella, and Stemphylium [7–11]. However, comparatively few Fungi represent an integral part of the biomass of any species of fungi have been described [8–10]. natural environment including soils. In soils, they act Freshwater nourishes diverse habitats for fungi, as agents governing soil carbon cycling, plant nutri- such as fallen leaves, plant litter, decaying wood, tion, and pathology. Many fungal species also adapt to aquatic plants and insects, and soils. Little
    [Show full text]