Dietary Flexibility and Feeding Strategies of Eulemur

Total Page:16

File Type:pdf, Size:1020Kb

Dietary Flexibility and Feeding Strategies of Eulemur Western University Scholarship@Western Anthropology Publications Anthropology Department 12-10-2015 Dietary Flexibility and Feeding Strategies of Eulemur: A Comparison with Propithecus Hiroki Sato Primate Research Institute, Kyoto University, Japan, [email protected] Luca Santini Department of Biology and Biotechnologies, Sapienza Università di Roma Erik R. Patel Duke Lemur Center, Duke University, Durham, NC, USA Marco Campara Nocturnal Primate Research Group, Dept. of Social Sciences, Oxford Brookes University, Oxford, UK Nayuta Yamashita Institute for Population Genetics, University of Veterinary Medicine, Vienna, Austria See next page for additional authors Follow this and additional works at: https://ir.lib.uwo.ca/anthropub Part of the Anthropology Commons, Behavior and Ethology Commons, Biodiversity Commons, Other Animal Sciences Commons, and the Zoology Commons Citation of this paper: Sato, Hiroki; Santini, Luca; Patel, Erik R.; Campara, Marco; Yamashita, Nayuta; Colquhoun, Ian C.; and Donati, Giuseppe, "Dietary Flexibility and Feeding Strategies of Eulemur: A Comparison with Propithecus" (2015). Anthropology Publications. 60. https://ir.lib.uwo.ca/anthropub/60 Authors Hiroki Sato, Luca Santini, Erik R. Patel, Marco Campara, Nayuta Yamashita, Ian C. Colquhoun, and Giuseppe Donati This article is available at Scholarship@Western: https://ir.lib.uwo.ca/anthropub/60 Int J Primatol (2016) 37:109–129 DOI 10.1007/s10764-015-9877-6 Dietary Flexibility and Feeding Strategies of Eulemur: A Comparison with Propithecus Hiroki Sato1 & Luca Santini2 & Erik R. Patel3 & Marco Campera4 & Nayuta Yamashita5,6 & Ian C. Colquhoun7 & Giuseppe Donati4 Received: 20 May 2015 /Accepted: 7 September 2015 /Published online: 10 December 2015 # Springer Science+Business Media New York 2015 Abstract Despite the great variety of habitats in Madagascar, Eulemur has success- fully populated most forested habitats on the island. Although the high dietary flexi- bility of Eulemur is often credited as one of the drivers of its evolutionary success, other behavioral evidence suggests a limited capacity for dietary switching. To shed light on the feeding strategies of Eulemur, we compared the dietary flexibility between popu- lations of this genus with that of another widespread lemur taxon, Propithecus.We hypothesized that Eulemur would show greater dietary flexibility than Propithecus, which has a digestive system specialized for folivory, and that Eulemur living in dry forests would switch its diet from fruit to other food seasonally. To examine these hypotheses, we performed a phylogenetic least-squares analysis on 10 populations of Eulemur and 7 of Propithecus to assess the contribution of environmental variables and body mass on their dietary flexibility while controlling for phylogenetic relatedness. Eulemur relied heavily on fruit and did not show large variations in primary food over the year. Propithecus consumed leaves and fruits equally and exhibited considerable * Hiroki Sato [email protected] 1 Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan 2 Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell’Università 32, 00185 Rome, Italy 3 Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, USA 4 Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK 5 Institute for Population Genetics, University of Veterinary Medicine, Vienna, Josef Baumann Gasse 1, 1210 Vienna, Austria 6 Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010 Vienna, Austria 7 Department of Anthropology and The Centre for Environment & Sustainability, University of Western Ontario, London, Ontario N6A 5C2, Canada 110 H. Sato et al. flexibility across seasons. Therefore, in contrast to our predictions, the anatomical specialization for fiber digestion heightens dietary flexibility in Propithecus.Atthe intrageneric level, we found similar ecogeographic variation; populations of both genera with heavier body mass consumed more fruit. As we predicted, Eulemur in drier habitats switched the diet from fruit to alternative food more frequently. To compensate for low dietary flexibility, Eulemur mostly adopts a power-feeding strategy by which it increases energy expenditure to acquire patchily distributed fruit resources. Keywords Anatomical adaptation . Behavioral flexibility. Diet . Feeding strategies . Sifakas . True lemurs Introduction Dietary switching, i.e., feeding on alternative resources, is the most common primate response to spatial and temporal variations in food availability (Hemingway and Bynum 2005). Dietary flexibility has been defined B…as the capacity to adjust digestive strategy according to the chemical and structural quality of the foods available^ (Chapman et al. 2002, p. 344). Therefore, such flexibility is determined primarily by anatomical and physiological adaptations, e.g., mechanisms of mastication and digestion (Chivers 1994;Kinzey1992;Lambert1998; Rylands 1993). However, even when anatomical specializations are present, many species still show greater variability in diet than what would be expected by their gut adaptations (Chapman and Chapman 1990). Comparative analyses between different taxa with distinct ana- tomical adaptations have been performed to understand the degree of dietary flexibility of primates (Milton 1998; Simmen and Sabatier 1996; Tsuji et al. 2013; Yamagiwa and Basabose 2006). For example, cercopithecines with simple digestive tracts exhibit greater dietary diversity and more frequent dietary switching than do colobines, which have specialized stomachs for fiber digestion (Lambert 2002). In Madagascar, climatic seasonality and unpredictability caused by tropical mon- soons (Dewar and Richard 2007;Jury2003) strongly influence phenological patterns and, thus, the food available to lemurs (Bollen and Donati 2005; Ganzhorn et al. 1999; Wright 1999). Moreover, the climate varies dramatically across the island, particularly between the evergreen rain forests of the east and northeast coasts and the dry deciduous and xerophytic forest formations of the west and south (Jury 2003). One of the most successful primate radiations on the island is the true lemur group (Eulemur spp.), as shown by the presence of one or two species in all forested habitats (Tattersall 1982). Previous field studies focused on the temporal variations in feeding patterns of Eulemur spp. at single sites (Andrews and Birkinshaw 1998;Andriamaharoaet al. 2010; Birkinshaw 1995;Curtis2004; Donati et al. 2007a; Freed 1996;Overdorff1993; Rasmussen 1999;Satoet al. 2014; Tarnaud 2006; Vasey 2000), whereas only a few studies have explored regional variations among species or populations (Donati et al. 2009;Johnson2006; Ossi and Kamilar 2006; Tattersall and Sussman 1998). Based on these studies, the Eulemur complex is identified as semifrugivorous with relatively greater dietary flexibility than the mainly frugivorous Varecia spp., which are found only in the eastern humid forests (Balko and Underwood 2005;Britt2000; Vasey 2000). Generally, diets of Eulemur tend to be higher in fruit in the eastern region Dietary Flexibility and Feeding Strategies of Eulemur 111 (Donati et al. 2007a;Overdorff1993), whereas a higher degree of folivory has been recorded in some western populations (Colquhoun 1997; Curtis et al. 1999; Sussman 1977). Thus, overall this genus is considered very flexible, and its capacity for dietary switching is often mentioned as one of the main traits that contributed to the success of the Eulemur radiation (Ossi and Kamilar 2006). However, during periods of fruit scarcity, Eulemur adopts several behavioral strat- egies to pursue fruit, an approach that dietary shifters do not usually rely on (Colquhoun 1993;Donatiet al. 2007a; Overdorff 1993). Among the strategies ob- served have been prolonged feeding activities over a 24-h period without shifting food categories (Donati et al. 2007a, 2009); increased ranging efforts (Overdorff 1993;Sato 2013a; Volampeno et al. 2011); reduced cohesion, or fission, of large groups to mitigate scramble competition (Colquhoun 1993;Donatiet al. 2011; Freed 1996; Overdorff and Johnson 2003); and, in several Eulemur species, a seasonal shift to an Benergy- minimizing strategy^ in which animals modify behavioral patterns to minimize energy expenditure (sensu Albert et al. 2013;Camperaet al. 2014)byprolongingresting (E. macaco: Colquhoun 1993, 1997) or decreasing daily traveling (E. collaris: Campera et al. 2014). In primates, such flexible and dynamic behavioral strategies often compensate for limited dietary flexibility (limited physio-anatomical flexibility). Thus, there is an apparent inconsistency between traditional knowledge about the dietary flexibility of Eulemur and their observed behavioral flexibility in pursuing primary food resources. One way to clarify the dietary flexibility of Eulemur is to compare this group with another lemur group that successfully radiated in Madagascar, Propithecus,whichis traditionally considered more specialized in terms of its physio-anatomical adaptation for digestion (Campbell et al. 2000;Hill1953; Richard 1977). The genus Propithecus has extensive molar crests for fracturing leaf material and masticating seeds (Yamashita 1998) and a specialized gut with high fiber digestibility via microbial fermentation (Campbell et al. 2000, 2004b;Hill1953). Eulemur and Propithecus have been thought to fill similar dietary niches as those filled by cercopithecines and colobines
Recommended publications
  • In Situ Conservation
    NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event.
    [Show full text]
  • Lemur Bounce!
    Assets – Reections Icon Style CoverAssets Style – Reections 1 Icon Style Y E F O N Cover StyleR O M M R A A Y E F D O N C A S R O GA M M R A D A AGASC LemurVISUAL Bounce! BRAND LearningGuidelines and Sponsorship Pack VISUAL BRAND Guidelines 2 Lemur Bounce nni My name is Lennie Le e Bounce with me B .. ou and raise money to n c protect my Rainforest e L ! home! L MfM L 3 What is a Lemur Bounce? A Lemur Bounce is a sponsored event for kids to raise money by playing bouncing games. In this pack: * Learning fun for kids including facts and quizzes Indoor crafts and outside bouncing games for * the Lemur Bounce Day * Links to teaching resources for schools * Lesson planning ideas for teachers * Everything you need for a packed day of learning and fun! Contents Fun Bounce activities Page No. Let’s BounceBounce – YourLemur valuable support 5 n n Lemur Bouncee i e L – Basics 7 B u o Planningn for a Lemur Bounce Day 8 c L e Lemur! Bounce Day Assembly 8 Make L a Lemur Mask 9 Make a Lemur Tail & Costume 10 Games 11-12 Sponsorship Forms 13-14 Assets – Reections M f Certificates 15-20 Icon Style M Cover Style L Y E F O N R Fun Indoor activities O M M R A Planning your lessons for a Lemur Bounce Day 22 D A A SC GA Fun Facts about Madagascar 23 Fun Facts about Lemurs 24 Colouring Template 25 VISUAL BRAND Guidelines Word Search 26 Know your Lemurs 27 Lemur Quiz 28 Madagascar Quiz 29-31 Resources 32 Song and Dance 33 Contact us 34 LEMUR BOUNCE BOUNCE fM FOR MfM LEMUR BASICS Y NE FO O R WHAT ‘LEM OUNC“ ‘ DO YOU KNOW YOUR LEMUR M Have you ever seen a lemur bounce? Maaasar is ome to over 0 seies o endemi lemurs inluding some M very ouncy ones lie the Siaa lemur ut tese oreous rimates are highl endangere e need to at R Let’s Bounce - Your valuable support A no to sae teir aitat and rotect tem rom etin tion arity Mone or Maaasar is alling out to A D C Wherechildren does everywhere the money to organizego? a fun charity ‘lemur bounce’.
    [Show full text]
  • Population and Habitat Assessments for Diurnal and Cathemeral Lemurs Using Surveys, Satellite Imagery and GIS
    Oryx Vol 39 No 2 April 2005 The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS Mitchell T. Irwin, Steig E. Johnson and Patricia C. Wright Abstract The unique primates of south-eastern information system, and censuses are used to establish Madagascar face threats from growing human popula- range boundaries and develop estimates of population tions. The country’s extant primates already represent density and size. These assessments are used to identify only a subset of the taxonomic and ecological diversity regions and taxa at risk, and will be a useful baseline existing a few thousand years ago. To prevent further for future monitoring of habitat and populations. Precise losses remaining taxa must be subjected to effective estimates are impossible for patchily-distributed taxa monitoring programmes that directly inform conserva- (especially Hapalemur aureus, H. simus and Varecia tion efforts. We offer a necessary first step: revision of variegata variegata); these taxa require more sophisticated geographic ranges and quantification of habitat area modelling. and population size for diurnal and cathemeral (active during both day and night) lemurs. Recent satellite Keywords Conservation status, geographic range, GIS, images are used to develop a forest cover geographical lemurs, Madagascar, population densities, primates. Introduction diseases (Burney, 1999). However, once this ecoregion was inhabited, its combination of abundant timber and The island nation of Madagascar has recently been nutrient-poor soil (causing a low agricultural tenure classified as both a megadiversity country and one of time) led to rapid deforestation. 25 biodiversity hotspots, a classification reserved for Green & Sussman (1990) used satellite images from regions combining high biodiversity with high levels 1973 and 1985 and vegetation maps from 1950 to recon- of habitat loss and extinction risk (Myers et al., 2000).
    [Show full text]
  • Cathemeral Activity Patterns of the Blue-Eyed Black Lemur Eulemur Macaco Flavifrons in Intact and Degraded Forest Fragments
    ENDANGERED SPECIES RESEARCH Printed October 2007 Vol. 3: 239–247, 2007 Endang Species Res Published online September 12, 2007 Cathemeral activity patterns of the blue-eyed black lemur Eulemur macaco flavifrons in intact and degraded forest fragments Nora Schwitzer1, Werner Kaumanns1, Peter C. Seitz2, Christoph Schwitzer3,* 1Working Group Primatology, Zoologischer Garten Köln, Riehler Strasse 173, 50735 Köln, Germany 2Department of Biophysics, Technische Universität München, James Franck Strasse, 85748 Garching, Germany 3Bristol Zoo Gardens, Clifton, Bristol BS8 3HA, UK ABSTRACT: This study describes the activity pattern of the blue-eyed black lemur Eulemur macaco flavifrons for the first time and investigates the parameters, such as season or habitat, that may influ- ence the distribution of activity over the 24 h cycle. Four groups of E. m. flavifrons in 2 forest frag- ments with different degrees of degradation were followed for 24 h mo–1 over a 7 mo period between July 2004 and July 2005. Blue-eyed black lemurs exhibited a bimodal activity pattern which peaked during the morning and evening twilight. The groups consistently showed activity bouts both during the day and at night, a behaviour that corresponds to Tattersall’s (1987) definition of cathemerality. The proportion of illuminated lunar disc and the nocturnal illumination index were positively associ- ated with the amount of nocturnal activity. Total activity, both diurnal and nocturnal, was signifi- cantly higher in the secondary than in the primary forest. In view of our results, the cathemeral behaviour of E. m. flavifrons may best be explained as flexible responses to a framework of varying environmental factors, each of which may enhance or inhibit activity within the lemurs’ range of adaptability.
    [Show full text]
  • From Darkness to Daylight: Cathemeral Activity in Primates
    JASs Invited Reviews Journal of Anthropological Sciences Vol. 84 (2006), pp. 1-117-32 From darkness to daylight: cathemeral activity in primates Giuseppe Donati & Silvana M. Borgognini-Tarli Dipartimento di Biologia, Unità di Antropologia, Università di Pisa, Via S. Maria, 55, Pisa, Italy, e-mail: [email protected] Summary – Within the primate order, Haplorrhini and Strepsirrhini are adapted to diurnal or nocturnal lifestyle. However, Malagasy lemurs exhibit a wide range of activity patterns, from almost completely nocturnal to almost completely diurnal, while others are active over the 24-hours. Cathemerality, the term minted by Tattersall (1987) to define the latter activity style, has been recorded in Eulemur and Hapalemur, as well as in some populations of the New World monkey Aotus. As most animals specialize in a particular phase of the 24- hour cycle, the cathemeral strategy is expected to be the consequence of powerful pressures. We will review hypotheses and findings on ultimate reasons of primate cathemeral activity, present proximate factors shaping the activity cycle and discuss the possible roles of feeding competition, food shortage and dietary quality, thermoregulation, and predation in making this activity advantageous. Overall, we will see how unstable environments and various community characteristics would tend to select for a flexible activity phase. Most attempts to explain cathemerality have relied on adaptive explanations, which assume that this activity is stable and deep-rooted. In contrast, some researchers have suggested that cathemerality represents a non-adaptive transitional state between nocturnality and diurnality. Chronobiology studies indicate that cathemeral species should be considered as dark active primates, thus favouring a recent origin.
    [Show full text]
  • Old World Primates Face New World Challenge
    Black and white ruffed lemurs represent just one of 93 different species of lemur that cling to a precarious existence in the dwindling forests of Madagascar. Text and photos by Sean Crane Old World Primates Face New World Challenge T here’s one with blue eyes. One with orange eyes. One that dances a ballet. Another that worships the sun. There’s one that grunts like a pig while yet another meows like a cat. And then there’s the one that defies all logical descrip- tion. It has teeth like a rodent, ears like a fox, and fingers than a golf ball. And although At its best, Madagascar the planet. To call the situa- time, but not nearly at the rate is a mind-boggling diversity Nikon D200, Nikkor 17-35 f/2.8 that look like something only they come in every possible is a beguiling Eden of other- tion desperate is far from an that forests are disappearing. of flora and fauna. Approxi- Tim Burton could dream up. shape, size and color, they’re worldly landscapes, teeming overstatement. Habitat pres- Slash and burn farming, log- mately 70% of Madagascar’s Depending on who’s doing all classified as lemurs. And with exotic life. At its worst, ervation in Madagascar isn’t ging, and the cultivation of animals are found nowhere the counting, there are more they all live in one magical it’s an environmental disaster, so much an initiative as it is rice are largely to blame. To else on earth, including half than 90 different kinds.
    [Show full text]
  • Annual Report 2020
    SEED Madagascar’s Conservation Research Programme ANNUAL REPORT 2020 Conservation Research Coordinator: Kathryn Strang Executive Conservation Coordinator: Sam Hyde Roberts Executive Summary This report summarises the activities of the SEED Conservation Research Programme (SCRP) during 2020. Since being established in 2010, SCRP has worked together with the SEED Environmental and Livelihoods Department, the Sainte Luce community, international institutions, and local authorities to understand the importance and use of the littoral forest and surrounding habitats. SCRP aims to expand scientific knowledge of the ecology and population trends of the native fauna and flora; and highlight the importance of biodiversity, conservation, and protection in the area. SCRP continues to carry out important biodiversity studies with the help of short-term volunteers, as well as working with the project teams within the Environment Department to conduct project research. This year has seen many challenges, with the COVID-19 pandemic interrupting long-term population monitoring, reducing staff capacity, and suspending the short-term volunteer programme that builds capacity within the research programme. Despite this, SCRP has adapted, focusing on capacity building local guides to continue with data collection. This year has also seen a restructuring of the conservation education programme, greater integration of the Project Development team to expand our biodiversity research, the publication of two studies, including the results from an eight-year palm project, and a contribution towards the latest lemur IUCN assessments. Study Site SCRP’s work is focused in the littoral forests of Sainte Luce. At almost 2,000 hectares, these littoral forests are considered to be amongst the largest and most intact examples of this threatened habitat type remaining in Madagascar.
    [Show full text]
  • December 2013
    E-ulemur Latitudes e-newsletter December 2013 www.lemurreserve.org Click here to peek inside the Ako books and receive our special watercolor by Deborah Ross holiday offer for the six book deborahrossart.com series. Thank You For Your Involvement & Support We have had a very successful and exciting year at the Lemur Conservation Foundation (LCF) with some significant achievements in our conservation, education, and outreach partnerships. Thanks to your involvement, we are able to increase our impact in the communities we serve, as well as meet the challenges facing lemurs, the most endangered primates species in the world, and Madagascar's important biodiversity. At this time we invite you to join us as we build on our successes. For example, in 2012 all three of the rare Mongoose lemurs born in the United States belonged to LCF. In addition to the Mongoose lemur births, Ansell, a Ring-tailed lemur, gave birth to twins. Ansell is an experienced mother, who gave birth in the forest for the second time and reared her infants while leading her troop, marking a significant achievement for our free- ranging colony. Find organic spices from Madagascar in our Amazon store This is why we ask you to consider a year-end gift to help us expand our success in lemur propagation, the core of our mission, onsite research opportunities, and education outreach that will help build awareness about lemurs and sustain their populations in the future. In 2014 LCF's Ako Project, a series of six books for children 4 to 8 years old, written by Dr.
    [Show full text]
  • LCF 2018 Annual Report
    ANNUAL REPORT 2018 On the cover, mongoose lemur Julio peeks from beneath his mother’s belly soon after his birth. He was born on the LCF reserve in June on a breeding recommendation from the Association of Zoos & Aquariums Species Survival Plan. This is the fourth infant born to parents Leena and Merced, since Leena’s arrival in 2014. Mongoose lemurs are Critically Endangered, facing an extremely high risk of extinction in the immediate future. LCF’s Managed Breeding Program plays a vital role in maintaining a genetic safety net for lemurs. In this photo, Julio clings to his mother at eight weeks of age. Photos: Caitlin Kenney, LCF Zoological Manager LEMURS DEAR FRIENDS, One of the most rewarding aspects of my job is watching the lemurs leaping through the trees of their forest habitats at our reserve in Myakka City, Florida. These remarkable moments are a direct reminder of why the Lemur Conservation Foundation is unwaveringly working to save lemurs from extinction. But these occasions also compel us to consider what is at stake. While the lemurs on our 130-acre reserve help foster compassion for their species, they also serve a loftier purpose. LCF’s lemurs are part of the Association of Zoos and Aquariums’ cooperative and scientific Species Survival Plans designed to safeguard the survival of lemur species. With nearly every lemur species at risk of extinction, managed lemur popula- tions offer the possibility of a second chance. To offer lemurs the best prospect for a second chance, LCF has com- mitted to increasing space to keep up with the success of our conserva- tion breeding program while significantly expanding our efforts to protect lemurs and forest habitats in Madagascar.
    [Show full text]
  • Habitat Degradation and Seasonality Affect Physiological Stress Levels of Eulemur Collaris in Littoral Forest Fragments
    Habitat Degradation and Seasonality Affect Physiological Stress Levels of Eulemur collaris in Littoral Forest Fragments Michela Balestri1,2, Marta Barresi2, Marco Campera1,2, Valentina Serra2, Jean Baptiste Ramanamanjato3, Michael Heistermann4, Giuseppe Donati1* 1 Department of Social Sciences, Oxford Brookes University, Oxford, United Kingdom, 2 Department of Biology, University of Pisa, Pisa, Italy, 3 QIT Madagascar Minerals, Rio Tinto, Tolagnaro, Madagascar, 4 Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany Abstract The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area.
    [Show full text]
  • Lemurs of Madagascar – a Strategy for Their
    Cover photo: Diademed sifaka (Propithecus diadema), Critically Endangered. (Photo: Russell A. Mittermeier) Back cover photo: Indri (Indri indri), Critically Endangered. (Photo: Russell A. Mittermeier) Lemurs of Madagascar A Strategy for Their Conservation 2013–2016 Edited by Christoph Schwitzer, Russell A. Mittermeier, Nicola Davies, Steig Johnson, Jonah Ratsimbazafy, Josia Razafindramanana, Edward E. Louis Jr., and Serge Rajaobelina Illustrations and layout by Stephen D. Nash IUCN SSC Primate Specialist Group Bristol Conservation and Science Foundation Conservation International This publication was supported by the Conservation International/Margot Marsh Biodiversity Foundation Primate Action Fund, the Bristol, Clifton and West of England Zoological Society, Houston Zoo, the Institute for the Conservation of Tropical Environments, and Primate Conservation, Inc. Published by: IUCN SSC Primate Specialist Group, Bristol Conservation and Science Foundation, and Conservation International Copyright: © 2013 IUCN Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA Citation: Schwitzer C, Mittermeier RA, Davies N, Johnson S, Ratsimbazafy J, Razafindramanana J, Louis Jr. EE, Rajaobelina S (eds). 2013. Lemurs of Madagascar: A Strategy for Their Conservation 2013–2016. Bristol, UK: IUCN SSC Primate Specialist Group, Bristol Conservation and Science Foundation, and Conservation International. 185 pp. ISBN: 978-1-934151-62-4 Illustrations: © Stephen D.
    [Show full text]
  • Annual Report MIARAKA | TOGETHER
    2017 LEMUR CONSERVATION FOUNDATION Annual Report MIARAKA | TOGETHER 1 On the cover: A silky sifaka photographed by Dr. Erik Patel in Anjanaharibe-Sud Special Reserve. Pictured on the inside covers are scenic views of Anjanaharibe-Sud Special Reserve (ASSR) and neighboring villages (front) and Marojejy National Park (back) in northeastern Madagascar. The Lemur Conservation Foundation works with partners on the ground to support these mountainous rainforest reserves, and established Camp Indri in ASSR as an ecotourism destination. Spanning 280 sq km (108 square miles), ASSR is home to at least 11 species of lemurs, including critically endangered indri and silky sifakas, and a wide variety of rare plants and wildlife. Photo credit: Dr. Erik Patel 2 Dear Friends OF THE LEMUR you make it possible to protect 830 square Conservation Foundation, miles of pristine lemur habitat as well as create sustainable livelihoods in Madagas- Table of contents The Lemur Conservation Foundation’s car, educate the next generation of con- progress toward our vital mission to save servationists, and expand our conservation the primates of Madagascar from extinc- breeding program at our lemur reserve in Director’S Letter 1 tion is made possible only by the combined Florida. Thank you for partnering with us efforts, compassion, and support of our to create positive change for lemurs, com- Lemurs 2 Malagasy partners, generous donors, dedi- munities, and our planet. cated Board of Directors, expert Scientific reserve 4 Advisory Council, researchers, artists, With gratitude, educators, and committed staff, interns, and volunteers. madagascar 6 Miaraka is the Malagasy word for togeth- er, and together we share and demonstrate Dr.
    [Show full text]