True Lemurs Bamboo Lemurs

Total Page:16

File Type:pdf, Size:1020Kb

True Lemurs Bamboo Lemurs Hapalemur griseus ssp. ranomafanensis Ranomafana Bamboo Lemur Data Deficient Hapalemur griseus ssp. gilberti Beanamalao Gray Bamboo Lemur Endangered Bamboo Lemurs Hapalemur griseus Hapalemur meridionalis Hapalemur occidentalis Prolemur Simus Hapalemur alaotrensis Hapalemur aureus Eastern lesser bamboo Lemur Southern bamboo lemur Northern bamboo lemur Greater bamboo lemur Lake Alaotra bamboo lemur Golden bamboo lemur Vulnerable Vulnerable Vulnerable Critically Endangered Critically Endangered Critically Endangered Photo: E.E. Louis Jr. Photo: J. Zaonarivelo Photo: E.E. Louis Jr. Photo: E.E. Louis Jr. Photo: Jotaguru © Photo: R.A. Mittermeier Pictures Unavailable: Hapalemur griseus ssp. ranomafanensis Hapalemur griseus ssp. gilberti Ranomafana Bamboo Lemur Beanamalao Gray Bamboo Lemur Data Deficient Endangered True Lemurs Lemur catta Eulemur albifrons Eulemur cinereiceps Eulemur flavifrons Eulemur fulvus Ring-tailed lemur White-fronted brown lemur White-collared brown lemur Blue-eyed black lemur Common brown lemur Endangered Endangered Critically Endangered Critically Endangered Near Threatened Photo: E.E. Louis Jr. Photo: J. Zaonarivelo Eulemur Photo: E.E. Louis Jr. Photo: R. Andriantompohavana Photo: E.E. Louis Jr. Eulemur macaco Eulemur mongoz Eulemur rubriventer Eulemur rufifrons Black lemur Mongoose lemur Red-bellied lemur Red-fronted brown lemur Vulnerable Critically Endangered Vulnerable Near Threatened Photo: J. Zaonarivelo Photo By E.E. Louis Jr. Photo: E.E. Louis Jr. Photo: Surrey John © Eulemur collaris Eulemur coronatus Eulemur rufus Eulemur sanfordi Collared brown lemur Crowned lemur Red brown lemur Sanford’s brown lemur Endangered Endangered Vulnerable Endangered Photo: R. Andriantompohavana Photo: R. Andriantompohavana Photo By E.E. Louis Jr. Photo By E.E. Louis Jr. Poster provided by Madagascar Biodiversity Partnership ©2014 www.madagascarpartnership.org.
Recommended publications
  • Gastrointestinal Parasites of Captive and Free-Living Lemurs and Domestic Carnivores in Eastern Madagascar
    Journal of Zoo and Wildlife Medicine 47(1): 141–149, 2016 Copyright 2016 by American Association of Zoo Veterinarians GASTROINTESTINAL PARASITES OF CAPTIVE AND FREE-LIVING LEMURS AND DOMESTIC CARNIVORES IN EASTERN MADAGASCAR Amy B. Alexander, D.V.M., Cle´mence Poirotte, D.V.M., Ingrid J. Porton, M.S., Karen L.M. Freeman, Ph.D., Fidisoa Rasambainarivo, D.V.M., M.S., Kimberly G. Olson, R.V.T., Bernard Iambana, and Sharon L. Deem, D.V.M., Ph.D., Dipl. A.C.Z.M. Abstract: Fecal samples from captive and free-living lemurs at Ivoloina Zoological Park (IZP) and domestic carnivores from six villages surrounding IZP were evaluated between July and August 2012. Free-living lemurs from Betampona Natural Reserve (BNR), a relatively pristine rainforest fragment 40 km away, were also evaluated in November 2013. All 33 dogs sampled (100%) and 16 of 22 cats sampled (72.7%) were parasitized, predominantly with nematodes (strongyles, ascarids, and spirurids) as well as cestodes and protozoans. Similar types of parasites were identified in the lemur populations. Identification of spirurid nematodes and protozoans in the lemur fecal samples were of concern due to previously documented morbidity and mortality in lemurs from these parasitic agents. Twelve of 13 free-living (93%) and 31 of 49 captive (63%) lemurs sampled at IZP had a higher parasite prevalence than lemurs at BNR, with 13 of 24 (54%) being parasitized. The lemurs in BNR are likely at risk of increased exposure to these parasites and, therefore, increased morbidity and mortality, as humans and their domestic animals are encroaching on this natural area.
    [Show full text]
  • Greater Bamboo Lemur Madagascar
    Madagascar Greater Bamboo Lemur Prolemur simus (Gray, 1871) Madagascar (2002, 2004, 2006, 2008) Patricia C. Wright, Eileen Larney, Edward E. Louis Jr., Rainer Dolch & Radoniana R. Rafaliarison The greater bamboo lemur (Prolemur simus) is the largest of Madagascar’s bamboo-eating lemurs (Albrecht et al. 1990) and the most critically endangered lemur in Madagascar (Ganzhorn et al. 1996, 1997; Konstant et al. 2006; Mittermeier et al. 2006; Ganzhorn and Johnson 2007; Wright et al. 2008). Although its placement in Prolemur has been questioned (for example, Tattersall 2007), it now represents a monospecific genus, based on a suite of distinctive dental and chromosomal characteristics (Vuillaume-Randriamanantena et al. 1985; Macedonia and Stanger 1994) that support its separation from the genus Hapalemur (cf. Groves 2001). Genetic studies further suggest that Hapalemur may, in fact, be more months, while it relies on its shoots and leaves at other closely related to the genus Lemur (Rumpler et al. times of the year. Prolemur simus supplements its diet 1989; Macedonia and Stanger 1994; Stanger-Hall 1997; with fruits, flowers, soil and fungi (Meier and Rumpler Fausser et al., 2002). Prolemur simus also differs from 1987; Tan 1999, 2000; Wright et al. 2008; R. Dolch, J. L. other bamboo lemurs in behavioral and ecological Fiely, J. Rafalimandimby, E. E. Louis Jr. unpubl. data). variation. Historical records (Schwarz 1931) and sub- Greater bamboo lemurs are cathemeral and fossil remains confirm that it was once widespread gregarious, with observed group sizes ranging up to throughout the island (Godfrey and Vuillaume- 28 individuals (Santini-Palka 1994; Tan 1999, 2000).
    [Show full text]
  • In Situ Conservation
    NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event.
    [Show full text]
  • Lemur Bounce!
    Assets – Reections Icon Style CoverAssets Style – Reections 1 Icon Style Y E F O N Cover StyleR O M M R A A Y E F D O N C A S R O GA M M R A D A AGASC LemurVISUAL Bounce! BRAND LearningGuidelines and Sponsorship Pack VISUAL BRAND Guidelines 2 Lemur Bounce nni My name is Lennie Le e Bounce with me B .. ou and raise money to n c protect my Rainforest e L ! home! L MfM L 3 What is a Lemur Bounce? A Lemur Bounce is a sponsored event for kids to raise money by playing bouncing games. In this pack: * Learning fun for kids including facts and quizzes Indoor crafts and outside bouncing games for * the Lemur Bounce Day * Links to teaching resources for schools * Lesson planning ideas for teachers * Everything you need for a packed day of learning and fun! Contents Fun Bounce activities Page No. Let’s BounceBounce – YourLemur valuable support 5 n n Lemur Bouncee i e L – Basics 7 B u o Planningn for a Lemur Bounce Day 8 c L e Lemur! Bounce Day Assembly 8 Make L a Lemur Mask 9 Make a Lemur Tail & Costume 10 Games 11-12 Sponsorship Forms 13-14 Assets – Reections M f Certificates 15-20 Icon Style M Cover Style L Y E F O N R Fun Indoor activities O M M R A Planning your lessons for a Lemur Bounce Day 22 D A A SC GA Fun Facts about Madagascar 23 Fun Facts about Lemurs 24 Colouring Template 25 VISUAL BRAND Guidelines Word Search 26 Know your Lemurs 27 Lemur Quiz 28 Madagascar Quiz 29-31 Resources 32 Song and Dance 33 Contact us 34 LEMUR BOUNCE BOUNCE fM FOR MfM LEMUR BASICS Y NE FO O R WHAT ‘LEM OUNC“ ‘ DO YOU KNOW YOUR LEMUR M Have you ever seen a lemur bounce? Maaasar is ome to over 0 seies o endemi lemurs inluding some M very ouncy ones lie the Siaa lemur ut tese oreous rimates are highl endangere e need to at R Let’s Bounce - Your valuable support A no to sae teir aitat and rotect tem rom etin tion arity Mone or Maaasar is alling out to A D C Wherechildren does everywhere the money to organizego? a fun charity ‘lemur bounce’.
    [Show full text]
  • Saving the Critically Endangered Greater Bamboo Lemur Prolemur Simus
    Wild Conservation Vol. 1 (2013), pp. 17-24. Saving the Critically Endangered greater bamboo lemur Prolemur simus Tony King1,2*, Christelle Chamberlan1, Maholy Ravaloharimanitra1 & Tovonanahary Rasolofoharivelo1 1The Aspinall Foundation, BP 7170 Andravoahangy, Antananarivo, Madagascar 2The Aspinall Foundation, Port Lympne Wild Animal Park, Hythe, Kent CT21 4PD, UK *Corresponding author: [email protected] Introduction The greater bamboo lemur Prolemur simus (Fig. 1) is Inspired by this critical situation, The Aspinall the only recognised species within the Prolemur genus, Foundation implemented a multi-disciplinary project is listed as Critically Endangered by the IUCN (2012), from the end of 2008 to ensure that effective actions and is considered as one of the top 50 most were identified and implemented as a matter of urgency evolutionarily distinct and globally endangered to save this critically endangered species from mammals by the ZSL EDGE Programme (Collen et al. imminent extinction (TAF 2008; King & Chamberlan 2011). The global primatological community has 2008, 2009; Rakotonirina et al. 2011). considered the species to be one of the most endangered Since the signing of an “Accord de Siège” with primates in the world for many years (Mittermeier et al. the Ministry of Foreign Affairs on 5 June 2009, The 2009). Aspinall Foundation is officially recognised as an NGO The greater bamboo lemur is endemic to in Madagascar, with the overall mission to work with Madagascar, and whilst fossil records show it was once local partners in Madagascar for the conservation of widely distributed across the island, it is now restricted endangered species and their habitats (King & to a patchy distribution within the remaining eastern Chamberlan 2010).
    [Show full text]
  • Population and Habitat Assessments for Diurnal and Cathemeral Lemurs Using Surveys, Satellite Imagery and GIS
    Oryx Vol 39 No 2 April 2005 The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS Mitchell T. Irwin, Steig E. Johnson and Patricia C. Wright Abstract The unique primates of south-eastern information system, and censuses are used to establish Madagascar face threats from growing human popula- range boundaries and develop estimates of population tions. The country’s extant primates already represent density and size. These assessments are used to identify only a subset of the taxonomic and ecological diversity regions and taxa at risk, and will be a useful baseline existing a few thousand years ago. To prevent further for future monitoring of habitat and populations. Precise losses remaining taxa must be subjected to effective estimates are impossible for patchily-distributed taxa monitoring programmes that directly inform conserva- (especially Hapalemur aureus, H. simus and Varecia tion efforts. We offer a necessary first step: revision of variegata variegata); these taxa require more sophisticated geographic ranges and quantification of habitat area modelling. and population size for diurnal and cathemeral (active during both day and night) lemurs. Recent satellite Keywords Conservation status, geographic range, GIS, images are used to develop a forest cover geographical lemurs, Madagascar, population densities, primates. Introduction diseases (Burney, 1999). However, once this ecoregion was inhabited, its combination of abundant timber and The island nation of Madagascar has recently been nutrient-poor soil (causing a low agricultural tenure classified as both a megadiversity country and one of time) led to rapid deforestation. 25 biodiversity hotspots, a classification reserved for Green & Sussman (1990) used satellite images from regions combining high biodiversity with high levels 1973 and 1985 and vegetation maps from 1950 to recon- of habitat loss and extinction risk (Myers et al., 2000).
    [Show full text]
  • Cathemeral Activity Patterns of the Blue-Eyed Black Lemur Eulemur Macaco Flavifrons in Intact and Degraded Forest Fragments
    ENDANGERED SPECIES RESEARCH Printed October 2007 Vol. 3: 239–247, 2007 Endang Species Res Published online September 12, 2007 Cathemeral activity patterns of the blue-eyed black lemur Eulemur macaco flavifrons in intact and degraded forest fragments Nora Schwitzer1, Werner Kaumanns1, Peter C. Seitz2, Christoph Schwitzer3,* 1Working Group Primatology, Zoologischer Garten Köln, Riehler Strasse 173, 50735 Köln, Germany 2Department of Biophysics, Technische Universität München, James Franck Strasse, 85748 Garching, Germany 3Bristol Zoo Gardens, Clifton, Bristol BS8 3HA, UK ABSTRACT: This study describes the activity pattern of the blue-eyed black lemur Eulemur macaco flavifrons for the first time and investigates the parameters, such as season or habitat, that may influ- ence the distribution of activity over the 24 h cycle. Four groups of E. m. flavifrons in 2 forest frag- ments with different degrees of degradation were followed for 24 h mo–1 over a 7 mo period between July 2004 and July 2005. Blue-eyed black lemurs exhibited a bimodal activity pattern which peaked during the morning and evening twilight. The groups consistently showed activity bouts both during the day and at night, a behaviour that corresponds to Tattersall’s (1987) definition of cathemerality. The proportion of illuminated lunar disc and the nocturnal illumination index were positively associ- ated with the amount of nocturnal activity. Total activity, both diurnal and nocturnal, was signifi- cantly higher in the secondary than in the primary forest. In view of our results, the cathemeral behaviour of E. m. flavifrons may best be explained as flexible responses to a framework of varying environmental factors, each of which may enhance or inhibit activity within the lemurs’ range of adaptability.
    [Show full text]
  • From Darkness to Daylight: Cathemeral Activity in Primates
    JASs Invited Reviews Journal of Anthropological Sciences Vol. 84 (2006), pp. 1-117-32 From darkness to daylight: cathemeral activity in primates Giuseppe Donati & Silvana M. Borgognini-Tarli Dipartimento di Biologia, Unità di Antropologia, Università di Pisa, Via S. Maria, 55, Pisa, Italy, e-mail: [email protected] Summary – Within the primate order, Haplorrhini and Strepsirrhini are adapted to diurnal or nocturnal lifestyle. However, Malagasy lemurs exhibit a wide range of activity patterns, from almost completely nocturnal to almost completely diurnal, while others are active over the 24-hours. Cathemerality, the term minted by Tattersall (1987) to define the latter activity style, has been recorded in Eulemur and Hapalemur, as well as in some populations of the New World monkey Aotus. As most animals specialize in a particular phase of the 24- hour cycle, the cathemeral strategy is expected to be the consequence of powerful pressures. We will review hypotheses and findings on ultimate reasons of primate cathemeral activity, present proximate factors shaping the activity cycle and discuss the possible roles of feeding competition, food shortage and dietary quality, thermoregulation, and predation in making this activity advantageous. Overall, we will see how unstable environments and various community characteristics would tend to select for a flexible activity phase. Most attempts to explain cathemerality have relied on adaptive explanations, which assume that this activity is stable and deep-rooted. In contrast, some researchers have suggested that cathemerality represents a non-adaptive transitional state between nocturnality and diurnality. Chronobiology studies indicate that cathemeral species should be considered as dark active primates, thus favouring a recent origin.
    [Show full text]
  • How Much Does It Cost to Be a Specialist
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Oxford Brookes University: RADAR 1 High energy or protein concentrations in food as possible offsets for cyanide 2 consumption by specialized bamboo lemurs in Madagascar? 3 4 Timothy M. Eppley1,2, Chia L. Tan3, Summer Arrigo-Nelson4, Giuseppe Donati2, Daniel J. 5 Ballhorn5, Jörg U. Ganzhorn1,* 6 7 1 Biozentrum Grindel, Department of Animal Ecology and Conservation, Universität 8 Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany 9 2 Nocturnal Primate Research Group, Department of Anthropology and Geography, Oxford 10 Brookes University, Gypsy Lane, Oxford OX3 0BP, UK 11 3 San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, 12 Escondido, CA 92027, USA 13 4 Department of Biological and Environmental Sciences, California University of 14 Pennsylvania, California, PA, 15120 USA 15 5 Department of Biology, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, 16 USA 17 18 * Corresponding author: Timothy M. Eppley 19 Biozentrum Grindel, Dept. Animal Ecology and Conservation 20 Martin-Luther-King Platz 3 21 20146 Hamburg, Germany 22 E-mail: [email protected] 23 24 Short title: Variation in food composition of bamboo lemurs 25 26 Abstract 27 Plants producing toxic plant secondary metabolites (PSM) deter feeding of folivores. Animals 28 that are able to cope with noxious PSMs have a niche with a competitive advantage over other 29 species. However, the ability to cope with toxic PSMs incurs costs for detoxification. In order 30 to assess possible compensations for the ingestion of toxic PSMs, we compare the chemical 31 quality of plants consumed by bamboo lemurs (genera Hapalemur and Prolemur; 32 strepsirrhine primates of Madagascar) in areas with and without bamboo.
    [Show full text]
  • Old World Primates Face New World Challenge
    Black and white ruffed lemurs represent just one of 93 different species of lemur that cling to a precarious existence in the dwindling forests of Madagascar. Text and photos by Sean Crane Old World Primates Face New World Challenge T here’s one with blue eyes. One with orange eyes. One that dances a ballet. Another that worships the sun. There’s one that grunts like a pig while yet another meows like a cat. And then there’s the one that defies all logical descrip- tion. It has teeth like a rodent, ears like a fox, and fingers than a golf ball. And although At its best, Madagascar the planet. To call the situa- time, but not nearly at the rate is a mind-boggling diversity Nikon D200, Nikkor 17-35 f/2.8 that look like something only they come in every possible is a beguiling Eden of other- tion desperate is far from an that forests are disappearing. of flora and fauna. Approxi- Tim Burton could dream up. shape, size and color, they’re worldly landscapes, teeming overstatement. Habitat pres- Slash and burn farming, log- mately 70% of Madagascar’s Depending on who’s doing all classified as lemurs. And with exotic life. At its worst, ervation in Madagascar isn’t ging, and the cultivation of animals are found nowhere the counting, there are more they all live in one magical it’s an environmental disaster, so much an initiative as it is rice are largely to blame. To else on earth, including half than 90 different kinds.
    [Show full text]
  • Dental Topography Indicates Ecological Contraction of Lemur Communities
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 148:215–227 (2012) Dental Topography Indicates Ecological Contraction of Lemur Communities Laurie R. Godfrey,1* Julia M. Winchester,2,3 Stephen J. King,1 Doug M. Boyer,2,4 and Jukka Jernvall3 1Department of Anthropology, University of Massachusetts, Amherst, MA 01003 2Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794-8081 3Institute for Biotechnology, University of Helsinki, Helsinki, Finland 4Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210-2850 KEY WORDS dental ecology; complexity (OPCR); Dirichlet normal energy (DNE); subfossil lemurs ABSTRACT Understanding the paleoecology of extinct subfossil lemurs and compared these values to those of subfossil lemurs requires reconstruction of dietary prefer- an extant lemur sample. The two metrics succeeded in ences. Tooth morphology is strongly correlated with diet separating species in a manner that provides insights in living primates and is appropriate for inferring dietary into both food processing and diet. We used them to ecology. Recently, dental topographic analysis has shown examine the changes in lemur community ecology in great promise in reconstructing diet from molar tooth Southern and Southwestern Madagascar that accompa- form. Compared with traditionally used shearing metrics, nied the extinction of giant lemurs. We show that the dental topography is better suited for the extraordinary poverty of Madagascar’s frugivore community is a long- diversity of tooth form among subfossil lemurs and has standing phenomenon and that extinction of large-bodied been shown to be less sensitive to phylogenetic sources of lemurs in the South and Southwest resulted not merely shape variation.
    [Show full text]
  • Annual Report 2020
    SEED Madagascar’s Conservation Research Programme ANNUAL REPORT 2020 Conservation Research Coordinator: Kathryn Strang Executive Conservation Coordinator: Sam Hyde Roberts Executive Summary This report summarises the activities of the SEED Conservation Research Programme (SCRP) during 2020. Since being established in 2010, SCRP has worked together with the SEED Environmental and Livelihoods Department, the Sainte Luce community, international institutions, and local authorities to understand the importance and use of the littoral forest and surrounding habitats. SCRP aims to expand scientific knowledge of the ecology and population trends of the native fauna and flora; and highlight the importance of biodiversity, conservation, and protection in the area. SCRP continues to carry out important biodiversity studies with the help of short-term volunteers, as well as working with the project teams within the Environment Department to conduct project research. This year has seen many challenges, with the COVID-19 pandemic interrupting long-term population monitoring, reducing staff capacity, and suspending the short-term volunteer programme that builds capacity within the research programme. Despite this, SCRP has adapted, focusing on capacity building local guides to continue with data collection. This year has also seen a restructuring of the conservation education programme, greater integration of the Project Development team to expand our biodiversity research, the publication of two studies, including the results from an eight-year palm project, and a contribution towards the latest lemur IUCN assessments. Study Site SCRP’s work is focused in the littoral forests of Sainte Luce. At almost 2,000 hectares, these littoral forests are considered to be amongst the largest and most intact examples of this threatened habitat type remaining in Madagascar.
    [Show full text]